Skip to main content

Machine Learning Modelling-Powered IoT Systems for Smart Applications

  • Chapter
  • First Online:
IoT-based Intelligent Modelling for Environmental and Ecological Engineering

Abstract

With the rapid development of Internet of Things (IoT) and the use of smart devices and social networks in our daily lives, applications-based on IoT are growing exponentially in many fields such industries, business and daily life activities. The IoT technology brings a lot of promise for humanity by improving life quality and comfort and by strengthening human bonds, among others. In the next few years, billions of connected devices will be spread across smart homes, vehicles, cities, and industries. Such connected devices, with restricted resources, will interchange with users and the surrounding environment. In this context, Machine Learning (ML), Which is able to provide embedded intelligence in the IoT devices and networks, can be leveraged to decode the meaning and behavior behind the device’s data, implement accurate predictions, and make decisions for several tasks. In this chapter, we present an overview of research works about ML-base IoT systems in different areas of applications. First, we present a deep overview of IoT’s technology. Then, we highlight the most fundamental concepts of ML categories and algorithms. After that, we shed light on the ML-based IoT critical challenges and provide some potential future research directions. Eventually, we present an IoT-based ML technique scenario for smart irrigation in Agriculture 4.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shadi Al-Sarawi, Mohammed Anbar, Rosni Abdullah, and Ahmad B Al Hawari. Internet of things market analysis forecasts, 2020–2030. In 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), pages 449–453. IEEE, 2020

    Google Scholar 

  2. Ovidiu Vermesan, Peter Friess, Patrick Guillemin, Sergio Gusmeroli, Harald Sundmaeker, Alessandro Bassi, Ignacio Soler Jubert, Margaretha Mazura, Mark Harrison, Markus Eisenhauer, et al. Internet of things strategic research roadmap. Internet of things-global technological and societal trends, 1(2011):9–52, 2011

    Google Scholar 

  3. Da Li Xu, He Wu, Li Shancang (2014) Internet of things in industries: A survey. IEEE Transactions on industrial informatics 10(4):2233–2243

    Article  Google Scholar 

  4. Spyros G Tzafestas. Ethics and law in the internet of things world. Smart cities, 1(1):98–120, 2018

    Google Scholar 

  5. Mohemed Almorsy, John Grundy, and Amani S Ibrahim. Collaboration-based cloud computing security management framework. In 2011 IEEE 4th International Conference on Cloud Computing, pages 364–371. IEEE, 2011

    Google Scholar 

  6. Rose Karen, Eldridge Scott, Chapin Lyman (2015) The internet of things: An overview. The Internet Society (ISOC) 80:1–50

    Google Scholar 

  7. James Manyika. The Internet of Things: Mapping the value beyond the hype. McKinsey Global Institute, 2015

    Google Scholar 

  8. Atzori Luigi, Iera Antonio, Morabito Giacomo (2017) Understanding the internet of things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks 56:122–140

    Article  Google Scholar 

  9. Luo Xiong, Liu Ji, Zhang Dandan, Chang Xiaohui (2016) A large-scale web qos prediction scheme for the industrial internet of things based on a kernel machine learning algorithm. Computer Networks 101:81–89

    Article  Google Scholar 

  10. Seifeddine Messaoud, Abbas Bradai, Syed Hashim Raza Bukhari, Pham Tran Anh Qung, Olfa Ben Ahmed, and Mohamed Atri. A survey on machine learning in internet of things: Algorithms, strategies, and applications. Internet of Things, page 100314, 2020

    Google Scholar 

  11. Trent D Buskirk, Antje Kirchner, Adam Eck, and Curtis S Signorino. An introduction to machine learning methods for survey researchers. Survey Practice, 11(1):2718, 2018

    Google Scholar 

  12. Jennifer G Dy and Carla E Brodley. Feature selection for unsupervised learning. Journal of machine learning research, 5(Aug):845–889, 2004

    Google Scholar 

  13. Tsai Cheng-Fa, Tsai Chun-Wei, Han-Chang Wu, Yang Tzer (2004) Acodf: a novel data clustering approach for data mining in large databases. Journal of Systems and Software 73(1):133–145

    Article  Google Scholar 

  14. Xiaojin Jerry Zhu. Semi-supervised learning literature survey. Technical report, University of Wisconsin-Madison Department of Computer Sciences, 2005

    Google Scholar 

  15. Said Omar, Masud Mehedi (2013) Towards internet of things: Survey and future vision. International Journal of Computer Networks 5(1):1–17

    Article  Google Scholar 

  16. Miao Wu, Ting-Jie Lu, Fei-Yang Ling, Jing Sun, and Hui-Ying Du. Research on the architecture of internet of things. In 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), volume 5, pages V5–484. IEEE, 2010

    Google Scholar 

  17. Gubbi Jayavardhana, Buyya Rajkumar, Marusic Slaven, Palaniswami Marimuthu (2013) Internet of things (iot): A vision, architectural elements, and future directions. Future generation computer systems 29(7):1645–1660

    Article  Google Scholar 

  18. Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog computing: A platform for internet of things and analytics. In Big data and internet of things: A roadmap for smart environments, pages 169–186. Springer, 2014

    Google Scholar 

  19. Lapide Larry (2004) Rfid: What’s in it for the forecaster. Journal of Business Forecasting Methods and Systems 23(2):16–19

    Google Scholar 

  20. Klaus Doppler, Mika Rinne, Carl Wijting, Cássio B Ribeiro, and Klaus Hugl. Device-to-device communication as an underlay to lte-advanced networks. IEEE communications magazine, 47(12):42–49, 2009

    Google Scholar 

  21. Ethem Alpaydin. Introduction to machine learning. MIT press, 2020

    Google Scholar 

  22. Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-supervised learning. Synthesis lectures on artificial intelligence and machine learning, 3(1):1–130, 2009

    Google Scholar 

  23. Kulis Brian, Basu Sugato, Dhillon Inderjit, Mooney Raymond (2009) Semi-supervised graph clustering: a kernel approach. Machine learning 74(1):1–22

    Article  Google Scholar 

  24. Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996

    Google Scholar 

  25. Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization in reinforcement learning. In International Conference on Machine Learning, pages 1282–1289. PMLR, 2019

    Google Scholar 

  26. Charalampos Doukas and Ilias Maglogiannis. Bringing iot and cloud computing towards pervasive healthcare. In 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pages 922–926. IEEE, 2012

    Google Scholar 

  27. Amendola Sara, Lodato Rossella, Manzari Sabina, Occhiuzzi Cecilia, Marrocco Gaetano (2014) Rfid technology for iot-based personal healthcare in smart spaces. IEEE Internet of things journal 1(2):144–152

    Article  Google Scholar 

  28. Moeen Hassanalieragh, Alex Page, Tolga Soyata, Gaurav Sharma, Mehmet Aktas, Gonzalo Mateos, Burak Kantarci, and Silvana Andreescu. Health monitoring and management using internet-of-things (iot) sensing with cloud-based processing: Opportunities and challenges. In 2015 IEEE International Conference on Services Computing, pages 285–292. IEEE, 2015

    Google Scholar 

  29. Yuan Jie Fan, Yue Hong Yin, Li Da Xu, Yan Zeng, and Fan Wu. Iot-based smart rehabilitation system. IEEE transactions on industrial informatics, 10(2):1568–1577, 2014

    Google Scholar 

  30. Robert SH Istepanian, Sijung Hu, Nada Y Philip, and Ala Sungoor. The potential of internet of m-health things “m-iot” for non-invasive glucose level sensing. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 5264–5266. IEEE, 2011

    Google Scholar 

  31. Yang Geng, Xie Li, Mäntysalo Matti, Zhou Xiaolin, Pang Zhibo, Da Li Xu, Kao-Walter Sharon, Chen Qiang, Zheng Li-Rong (2014) A health-iot platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. IEEE transactions on industrial informatics 10(4):2180–2191

    Article  Google Scholar 

  32. Arijit Ukil, Soma Bandyoapdhyay, Chetanya Puri, and Arpan Pal. Iot healthcare analytics: The importance of anomaly detection. In 2016 IEEE 30th international conference on advanced information networking and applications (AINA), pages 994–997. IEEE, 2016

    Google Scholar 

  33. Mwaffaq Otoom, Hussam Alshraideh, Hisham M Almasaeid, Diego López-de Ipiña, and José Bravo. Real-time statistical modeling of blood sugar. Journal of medical systems, 39(10):123, 2015

    Google Scholar 

  34. Syyada Abeer Fatima, Naveed Hussain, Asma Balouch, Iqra Rustam, Muhammad Saleem, and Muhammad Asif. Iot enabled smart monitoring of coronavirus empowered with fuzzy inference system. International Journal of Advance Research, Ideas and Innovations in Technology, 6(1), 2020

    Google Scholar 

  35. Vijayarani S, Dhayanand S et al (2015) Data mining classification algorithms for kidney disease prediction. International Journal on Cybernetics & Informatics (IJCI) 4(4):13–25

    Article  Google Scholar 

  36. Turanoglu-Bekar Ebru, Ulutagay Gozde, Kantarcı-Savas Suzan (2016) Classification of thyroid disease by using data mining models: a comparison of decision tree algorithms. Oxford Journal of Intelligent Decision and Data Sciences 2:13–28

    Article  Google Scholar 

  37. Maria Rita Palattella, Nicola Accettura, Luigi Alfredo Grieco, Gennaro Boggia, Mischa Dohler, and Thomas Engel. On optimal scheduling in duty-cycled industrial iot applications using ieee802. 15.4 e tsch. IEEE Sensors Journal, 13(10):3655–3666, 2013

    Google Scholar 

  38. Yan Hairong, Zhang Yan, Pang Zhibo, Da Li Xu (2014) Superframe planning and access latency of slotted mac for industrial wsn in iot environment. IEEE Transactions on Industrial Informatics 10(2):1242–1251

    Article  Google Scholar 

  39. Xuan Qiu, Hao Luo, Gangyan Xu, Runyang Zhong, and George Q Huang. Physical assets and service sharing for iot-enabled supply hub in industrial park (ship). International Journal of Production Economics, 159:4–15, 2015

    Google Scholar 

  40. Paul J Reaidy, Angappa Gunasekaran, and Alain Spalanzani. Bottom-up approach based on internet of things for order fulfillment in a collaborative warehousing environment. International Journal of Production Economics, 159:29–40, 2015

    Google Scholar 

  41. Charith Perera, Chi Harold Liu, Srimal Jayawardena, and Min Chen. A survey on internet of things from industrial market perspective. IEEE Access, 2:1660–1679, 2014

    Google Scholar 

  42. Seifeddine Messaoud, Abbas Bradai, and Emmanuel Moulay. Online gmm clustering and mini-batch gradient descent based optimization for industrial iot 4.0. IEEE Transactions on Industrial Informatics, 16(2):1427–1435, 2019

    Google Scholar 

  43. Messaoud Seifeddine, Bradai Abbas (2020) Olfa Ben Ahmed, Pham Quang, M Atri, and M Shamim Hossain. Deep federated q-learning-based network slicing for industrial iot, IEEE Transactions on Industrial Informatics

    Google Scholar 

  44. Dawaliby Samir, Bradai Abbas, Pousset Yannis (2019) Distributed network slicing in large scale iot based on coalitional multi-game theory. IEEE Transactions on Network and Service Management 16(4):1567–1580

    Article  Google Scholar 

  45. Bandyopadhyay Debasis, Sen Jaydip (2011) Internet of things: Applications and challenges in technology and standardization. Wireless personal communications 58(1):49–69

    Article  Google Scholar 

  46. Duan Yan-e. Design of intelligent agriculture management information system based on iot. In 2011 Fourth International Conference on Intelligent Computation Technology and Automation, volume 1, pages 1045–1049. IEEE, 2011

    Google Scholar 

  47. Sanbo Li. Application of the internet of things technology in precision agriculture irrigation systems. In 2012 International Conference on Computer Science and Service System, pages 1009–1013. IEEE, 2012

    Google Scholar 

  48. Anitha Ilapakurti and Chandrasekar Vuppalapati. Building an iot framework for connected dairy. In 2015 IEEE First International Conference on Big Data Computing Service and Applications, pages 275–285. IEEE, 2015

    Google Scholar 

  49. Fiona Edwards-Murphy, Michele Magno, Pádraig M Whelan, John O’Halloran, and Emanuel M Popovici. b+ wsn: Smart beehive with preliminary decision tree analysis for agriculture and honey bee health monitoring. Computers and Electronics in Agriculture, 124:211–219, 2016

    Google Scholar 

  50. Verheyen Kris, Adriaens Dries, Hermy Martin, Deckers Seppe (2001) High-resolution continuous soil classification using morphological soil profile descriptions. Geoderma 101(3–4):31–48

    Article  Google Scholar 

  51. Das K, Evans MD (1992) Detecting fertility of hatching eggs using machine vision ii: Neural network classifiers. Transactions of the ASAE 35(6):2035–2041

    Article  Google Scholar 

  52. Kaloxylos Alexandros, Eigenmann Robert, Teye Frederick, Politopoulou Zoi, Wolfert Sjaak, Shrank Claudia, Dillinger Markus, Lampropoulou Ioanna, Antoniou Eleni, Pesonen Liisa et al (2012) Farm management systems and the future internet era. Computers and electronics in agriculture 89:130–144

    Article  Google Scholar 

  53. Yifan Bo and Haiyan Wang. The application of cloud computing and the internet of things in agriculture and forestry. In 2011 International Joint Conference on Service Sciences, pages 168–172. IEEE, 2011

    Google Scholar 

  54. Yibo Chen, Jean-Pierre Chanet, and Kun Mean Hou. Rpl routing protocol a case study: Precision agriculture. In First China-France Workshop on Future Computing Technology (CF-WoFUCT 2012), 2012

    Google Scholar 

  55. Saif Al-Sultan, Moath M Al-Doori, Ali H Al-Bayatti, and Hussien Zedan. A comprehensive survey on vehicular ad hoc network. Journal of network and computer applications, 37:380–392, 2014

    Google Scholar 

  56. Peter Hank, Steffen Müller, Ovidiu Vermesan, and Jeroen Van Den Keybus. Automotive ethernet: in-vehicle networking and smart mobility. In 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1735–1739. IEEE, 2013

    Google Scholar 

  57. Dimosthenis Kyriazis, Theodora Varvarigou, Daniel White, Andrea Rossi, and Joshua Cooper. Sustainable smart city iot applications: Heat and electricity management & eco-conscious cruise control for public transportation. In 2013 IEEE 14th International Symposium on" A World of Wireless, Mobile and Multimedia Networks"(WoWMoM), pages 1–5. IEEE, 2013

    Google Scholar 

  58. Ma Xiaolei, Haiyang Yu, Wang Yunpeng, Wang Yinhai (2015) Large-scale transportation network congestion evolution prediction using deep learning theory. PloS one 10(3):e0119044

    Article  Google Scholar 

  59. Gaetano Fusco, Chiara Colombaroni, Luciano Comelli, and Natalia Isaenko. Short-term traffic predictions on large urban traffic networks: Applications of network-based machine learning models and dynamic traffic assignment models. In 2015 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), pages 93–101. IEEE, 2015

    Google Scholar 

  60. Donghwoon Kwon, Suwoo Park, SunHee Baek, Ritesh K Malaiya, Geumchae Yoon, and Jeong-Tak Ryu. A study on development of the blind spot detection system for the iot-based smart connected car. In 2018 IEEE International Conference on Consumer Electronics (ICCE), pages 1–4. IEEE, 2018

    Google Scholar 

  61. Hitoshi Kanoh, Takeshi Furukawa, Souichi Tsukahara, Kenta Hara, Hirotaka Nishi, and Hisashi Kurokawa. Short-term traffic prediction using fuzzy c-means and cellular automata in a wide-area road network. In Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005., pages 381–385. IEEE, 2005

    Google Scholar 

  62. Qi Wu, Chingchun Huang, Shih-yu Wang, Wei-chen Chiu, and Tsuhan Chen. Robust parking space detection considering inter-space correlation. In 2007 IEEE International Conference on Multimedia and Expo, pages 659–662. IEEE, 2007

    Google Scholar 

  63. Sahil Garg, Kuljeet Kaur, Syed Hassan Ahmed, Abbas Bradai, Georges Kaddoum, and Mohammed Atiquzzaman. Mobqos: Mobility-aware and qos-driven sdn framework for autonomous vehicles. IEEE Wireless Communications, 26(4):12–20, 2019

    Google Scholar 

  64. LaFrance Adrienne (2015) Self-driving cars could save 300,000 lives per decade in america. The Atlantic 29:

    Google Scholar 

  65. Amir-Hamed Mohsenian-Rad, Vincent WS Wong, Juri Jatskevich, Robert Schober, and Alberto Leon-Garcia. Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE transactions on Smart Grid, 1(3):320–331, 2010

    Google Scholar 

  66. Zhijing Qin, Grit Denker, Carlo Giannelli, Paolo Bellavista, and Nalini Venkatasubramanian. A software defined networking architecture for the internet-of-things. In 2014 IEEE network operations and management symposium (NOMS), pages 1–9. IEEE, 2014

    Google Scholar 

  67. George M Messinis, Alexandros E Rigas, and Nikos D Hatziargyriou. A hybrid method for non-technical loss detection in smart distribution grids. IEEE Transactions on Smart Grid, 10(6):6080–6091, 2019

    Google Scholar 

  68. Jindal A, Dua A, Kaur K, Singh M, Kumar N, Mishra S (2016) Decision tree and svm-based data analytics for theft detection in smart grid. IEEE Transactions on Industrial Informatics 12(3):1005–1016

    Article  Google Scholar 

  69. Vitaly Ford, Ambareen Siraj, and William Eberle. Smart grid energy fraud detection using artificial neural networks. In 2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG), pages 1–6. IEEE, 2014

    Google Scholar 

  70. Zheng Zibin, Yang Yatao, Niu Xiangdong, Dai Hong-Ning, Zhou Yuren (2017) Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Transactions on Industrial Informatics 14(4):1606–1615

    Article  Google Scholar 

  71. K Vimalkumar and N Radhika. A big data framework for intrusion detection in smart grids using apache spark. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pages 198–204. IEEE, 2017

    Google Scholar 

  72. Erwin Adi, Adnan Anwar, Zubair Baig, and Sherali Zeadally. Machine learning and data analytics for the iot. Neural Computing and Applications, pages 1–29, 2020

    Google Scholar 

  73. Furqan Alam, Rashid Mehmood, Iyad Katib, Nasser N Albogami, and Aiiad Albeshri. Data fusion and iot for smart ubiquitous environments: A survey. IEEE Access, 5:9533–9554, 2017

    Google Scholar 

  74. Yongrui Qin, Quan Z Sheng, Nickolas JG Falkner, Schahram Dustdar, Hua Wang, and Athanasios V Vasilakos. When things matter: A survey on data-centric internet of things. Journal of Network and Computer Applications, 64:137–153, 2016

    Google Scholar 

  75. Mohammad Saeid Mahdavinejad, Mohammadreza Rezvan, Mohammadamin Barekatain, Peyman Adibi, Payam Barnaghi, and Amit P Sheth. Machine learning for internet of things data analysis: A survey. Digital Communications and Networks, 4(3):161–175, 2018

    Google Scholar 

  76. Jiang Tigang, Fang Hua, Wang Honggang (2018) Blockchain-based internet of vehicles: Distributed network architecture and performance analysis. IEEE Internet of Things Journal 6(3):4640–4649

    Article  Google Scholar 

  77. Renjie Gu, Shuo Yang, and Fan Wu. Distributed machine learning on mobile devices: A survey. arXiv preprint arXiv:1909.08329, 2019

  78. Kato Nei, Mao Bomin, Tang Fengxiao, Kawamoto Yuichi, Liu Jiajia (2020) Ten challenges in advancing machine learning technologies toward 6g. IEEE Wireless Communications

    Google Scholar 

  79. S. Messaoud, A. Bradai, O. Ben Ahmed, P. Quang, M. Atri, and M. S. Hossain. Deep federated q-learning-based network slicing for industrial iot. IEEE Transactions on Industrial Informatics, pages 1, 2020

    Google Scholar 

  80. Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. Survey of personalization techniques for federated learning. arXiv preprint arXiv:2003.08673, 2020

  81. Latif U Khan, Walid Saad, Zhu Han, and Choong Seon Hong. Dispersed federated learning: Vision, taxonomy, and future directions. arXiv preprint arXiv:2008.05189, 2020

  82. Francis Griffiths and Melanie Ooi. The fourth industrial revolution-industry 4.0 and iot [trends in future i&m]. IEEE Instrumentation & Measurement Magazine, 21(6):29–43, 2018

    Google Scholar 

  83. Daiwat A Vyas, Dvijesh Bhatt, and Dhaval Jha. Iot: trends, challenges and future scope. IJCSC, 7(1):186–197, 2015

    Google Scholar 

  84. Mahmut Taha Yazici, Shadi Basurra, and Mohamed Medhat Gaber. Edge machine learning: Enabling smart internet of things applications. Big data and cognitive computing, 2(3):26, 2018

    Google Scholar 

  85. Devki Nandan Jha, Khaled Alwasel, Areeb Alshoshan, Xianghua Huang, Ranesh Kumar Naha, Sudheer Kumar Battula, Saurabh Garg, Deepak Puthal, Philip James, Albert Y Zomaya, et al. Iotsim-edge: A simulation framework for modeling the behaviour of iot and edge computing environments. arXiv preprint arXiv:1910.03026, 2019

  86. Ge Mouzhi, Bangui Hind, Buhnova Barbora (2018) Big data for internet of things: A survey. Future generation computer systems 87:601–614

    Article  Google Scholar 

  87. Salvador García, Sergio Ramírez-Gallego, Julián Luengo, José Manuel Benítez, and Francisco Herrera. Big data preprocessing: methods and prospects. Big Data Analytics, 1(1):9, 2016

    Google Scholar 

  88. Milenkovic Milan (2020) Internet of Things: Concepts and System Design. Springer

    Google Scholar 

  89. Jan Schlechtendahl, Matthias Keinert, Felix Kretschmer, Armin Lechler, and Alexander Verl. Making existing production systems industry 4.0-ready. Production Engineering, 9(1):143–148, 2015

    Google Scholar 

  90. Wiendahl Hans-Hermann (2011) Auftragsmanagement der industriellen Produktion: Grundlagen, Konfiguration. Springer-Verlag, Einführung

    Google Scholar 

  91. Marucci Alvaro, Colantoni Andrea, Zambon Ilaria, Egidi Gianluca (2017) Precision farming in hilly areas: The use of network rtk in gnss technology. Agriculture 7(7):60

    Article  Google Scholar 

  92. Burak Ozdogan, Anil Gacar, and Huseyin Aktas. Digital agriculture practices in the context of agriculture 4.0. Journal of Economics Finance and Accounting, 4(2):186–193, 2017

    Google Scholar 

  93. Strozzi Fernanda, Colicchia Claudia, Creazza Alessandro, Noè Carlo (2017) Literature review on the ‘smart factory’ oncept using bibliometric tools. International Journal of Production Research 55(22):6572–6591

    Article  Google Scholar 

  94. https://github.com/Chinukapoor/Smart-Agriculture-using-IoT-and-Machine-Learning

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seifeddine Messaoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Messaoud, S., Ben Ahmed, O., Bradai, A., Atri, M. (2021). Machine Learning Modelling-Powered IoT Systems for Smart Applications. In: Krause, P., Xhafa, F. (eds) IoT-based Intelligent Modelling for Environmental and Ecological Engineering. Lecture Notes on Data Engineering and Communications Technologies, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-71172-6_8

Download citation

Publish with us

Policies and ethics