The MIT RACECAR (2016). https://mit-racecar.github.io
Agrawal, P., Nair, A.V., Abbeel, P., Malik, J., Levine, S.: Learning to poke by poking: experiential learning of intuitive physics. In: NeurIPS (2016)
Google Scholar
Andrychowicz, O.M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B., Pachocki, J., Petron, A., Plappert, M., Powell, G., Ray, A., et al.: Learning dexterous in-hand manipulation. Int. J. Rob. Res. 39, 3–20 (2020)
CrossRef
Google Scholar
Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., Kalakrishnan, M., Downs, L., Ibarz, J., Pastor, P., Konolige, K., et al.: Using simulation and domain adaptation to improve efficiency of deep robotic grasping. In: ICRA (2018)
Google Scholar
Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: Benchmarking in manipulation research: the YCB object and model set and benchmarking protocols. arXiv:1502.03143 (2015)
Cheng, C.A., Mukadam, M., Issac, J., Birchfield, S., Fox, D., Boots, B., Ratliff, N.: RMPflow: a computational graph for automatic motion policy generation. In: International Workshop on the Algorithmic Foundations of Robotics (2018)
Google Scholar
Cosgun, A., Hermans, T., Emeli, V., Stilman, M.: Push planning for object placement on cluttered table surfaces. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2011)
Google Scholar
Coumans, E.: Bullet physics simulation. In: ACM SIGGRAPH 2015 Courses (2015)
Google Scholar
Hermans, T., Li, F., Rehg, J.M., Bobick, A.F.: Learning contact locations for pushing and orienting unknown objects. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2013)
Google Scholar
Izadinia, H., Seitz, S.M.: Scene recomposition by learning-based ICP. In: CVPR (2020)
Google Scholar
James, S., Davison, A.J., Johns, E.: Transferring end-to-end visuomotor control from simulation to real world for a multi-stage task. arXiv:1707.02267 (2017)
James, S., Wohlhart, P., Kalakrishnan, M., Kalashnikov, D., Irpan, A., Ibarz, J., Levine, S., Hadsell, R., Bousmalis, K.: Sim-to-real via sim-to-sim: data-efficient robotic grasping via randomized-to-canonical adaptation networks. In: CVPR (2019)
Google Scholar
Johnson, A.M., King, J.E., Srinivasa, S.: Convergent planning. IEEE Rob. Autom. Lett. (2016)
Google Scholar
Killpack, M.D., Kapusta, A., Kemp, C.C.: Model predictive control for fast reaching in clutter. Auton. Rob. 40, 537–560 (2016)
Google Scholar
Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor policies. J. Mach. Learn. Res. 17, 1334–1373 (2016)
Google Scholar
Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Rob. Res. 37, 421–436 (2018)
Google Scholar
Li, J.K., Lee, W.S., Hsu, D.: Push-Net: deep planar pushing for objects with unknown physical properties. In: Robotics: Science and Systems (2018)
Google Scholar
Lynch, K.M., Maekawa, H., Tanie, K.: Manipulation and active sensing by pushing using tactile feedback. In: IROS (1992)
Google Scholar
Lynch, K.M., Mason, M.T.: Dynamic underactuated nonprehensile manipulation. In: IROS (1996)
Google Scholar
Mason, M.T.: Compliance and force control for computer controlled manipulators. IEEE Trans. Syst. Man Cybern. 11, 418–432 (1981)
Google Scholar
Nair, A., Chen, D., Agrawal, P., Isola, P., Abbeel, P., Malik, J., Levine, S.: Combining self-supervised learning and imitation for vision-based rope manipulation. In: ICRA (2017)
Google Scholar
Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: ICRA (2011)
Google Scholar
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)
Google Scholar
Rusu, A.A., Večerík, M., Rothörl, T., Heess, N., Pascanu, R., Hadsell, R.: Sim-to-Real robot learning from pixels with progressive nets. In: CoRL (2017)
Google Scholar
Sadeghi, F.: DIViS: Domain invariant visual servoing for collision-free goal reaching. In: RSS (2019)
Google Scholar
Sadeghi, F., Levine, S.: CAD2RL: real single-image flight without a single real image. In: RSS (2017)
Google Scholar
Sadeghi, F., Toshev, A., Jang, E., Levine, S.: Sim2real viewpoint invariant visual servoing by recurrent control. In: CVPR (2018)
Google Scholar
Srinivasa, S.S., Lancaster, P., Michalove, J., Schmittle, M., Rockett, C.S.M., Smith, J.R., Choudhury, S., Mavrogiannis, C., Sadeghi, F.: MuSHR: a low-cost, open-source robotic racecar for education and research. arXiv preprint arXiv:1908.08031 (2019)
Stilman, M., Kuffner, J.J.: Navigation among movable obstacles: real-time reasoning in complex environments. Int. J. Humanoid Rob. 2, 479–503 (2005)
Google Scholar
Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: bridging the reality gap by domain randomization. In: CVPRW (2018)
Google Scholar
Wang, Y., Boyd, S.: Fast model predictive control using online optimization. IEEE Trans. Control Syst. Technol. 18, 267–278 (2009)
CrossRef
Google Scholar