Skip to main content

Autonomous Off-Road Navigation over Extreme Terrains with Perceptually-Challenging Conditions

Part of the Springer Proceedings in Advanced Robotics book series (SPAR,volume 19)

Abstract

We propose a framework for resilient autonomous navigation in perceptually challenging unknown environments with mobility-stressing elements such as uneven surfaces with rocks and boulders, steep slopes, negative obstacles like cliffs and holes, and narrow passages. Environments are GPS-denied and perceptually-degraded with variable lighting from dark to lit and obscurants (dust, fog, smoke). Lack of prior maps and degraded communication eliminates the possibility of prior or off-board computation or operator intervention. This necessitates real-time on-board computation using noisy sensor data. To address these challenges, we propose a resilient architecture that exploits redundancy and heterogeneity in sensing modalities. Further resilience is achieved by triggering recovery behaviors upon failure. We propose a fast settling algorithm to generate robust multi-fidelity traversability estimates in real-time. The proposed approach was deployed on multiple physical systems including skid-steer and tracked robots, a high-speed RC car and legged robots, as a part of Team CoSTAR’s effort to the DARPA Subterranean Challenge, where the team won 2nd and 1st place in the Tunnel and Urban Circuits, respectively.

R. Thakker, N. Alatur, D.D. Fan and J. Tordesillas—Equally contributed.

N. Alatur and J. Tordesillas—Work done while at the JPL, Caltech.

©2020, California Institute of Technology. All Rights Reserved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://costar.jpl.nasa.gov/.

  2. 2.

    https://www.subtchallenge.com/.

  3. 3.

    http://wiki.ros.org/navigation.

References

  1. Haruyama, J., Morota, T., Kobayashi, S., Sawai, S., Lucey, P.G., Shirao, M., Nishino, M.N.: Lunar holes and lava tubes as resources for lunar science and exploration. In: Moon, pp. 139–163. Springer, Heidelberg (2012)

    Google Scholar 

  2. Murphy, R.R.: Disaster Robotics. MIT Press, Cambridge (2014)

    Book  Google Scholar 

  3. Papadakis, P.: Terrain traversability analysis methods for unmanned ground vehicles: a survey. Eng. Appl. Artif. Intell. 26(4), 1373–1385 (2013)

    Article  Google Scholar 

  4. Otsu, K., Matheron, G., Ghosh, S., Toupet, O., Ono, M.: Fast approximate clearance evaluation for rovers with articulated suspension systems. J. Field Robot. 37(5), 768–785 (2019)

    Article  Google Scholar 

  5. Krüsi, P., Furgale, P., Bosse, M., Siegwart, R.: Driving on point clouds: motion planning, trajectory optimization, and terrain assessment in generic nonplanar environments. J. Field Robot. 34(5), 940–984 (2017)

    Article  Google Scholar 

  6. Florence, P., Carter, J., Tedrake, R.: Integrated perception and control at high speed: evaluating collision avoidance maneuvers without maps. In: Workshop on the Algorithmic Foundations of Robotics (WAFR) (2016)

    Google Scholar 

  7. Florence, P.R., Carter, J., Ware, J., Tedrake, R.: NanoMap: fast, uncertainty-aware proximity queries with lazy search over local 3D data. In: IEEE International Conference on Robotics and Automation (ICRA)

    Google Scholar 

  8. Brunner, M., Fiolka, T., Schulz, D., Schlick, C.M.: Design and comparative evaluation of an iterative contact point estimation method for static stability estimation of mobile actively reconfigurable robots. Robot. Auton. Syst. 63(P1), 89–107 (2015)

    Article  Google Scholar 

  9. Brunner, M., Brüggemann, B., Schulz, D.: Autonomously traversing obstacles: metrics for path planning of reconfigurable robots on rough terrain. In: International Conference on Informatics in Control, Automation and Robotics (ICINCO), vol. 2, pp. 58–69 (2012)

    Google Scholar 

  10. Ma, Y., Shiller, Z.: Pose Estimation of Vehicles Over Uneven Terrain (2019)

    Google Scholar 

  11. Iagnemma, K., Shimoda, S., Shiller, Z.: Near-optimal navigation of high speed mobile robots on uneven terrain. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4098–4103 (2008)

    Google Scholar 

  12. Fankhauser, P., Bloesch, M., Hutter, M.: Probabilistic terrain mapping for mobile robots with uncertain localization. IEEE Robot. Autom. Lett. 3(4), 3019–3026 (2018)

    Article  Google Scholar 

  13. Goldberg, S.B., Maimone, M.W., Matthies, L.: Stereo vision and rover navigation software for planetary exploration. IEEE Aerosp. Conf. 5, 2025–2036 (2002)

    Google Scholar 

  14. Ebadi, K., Chang, Y., Palieri, M., Stephens, A., Hatteland, A., Heiden, E., Thakur, A., Morrell, B., Carlone, L., Agha-Mohammadi, A.: LAMP: Large-scale autonomous mapping and positioning for exploration of perceptually-degraded subterranean environments. In: IEEE International Conference on Robotics and Automation, pp. 80–86 (2020)

    Google Scholar 

  15. Santamaria, A., Thakker, R., Fan, D.D., Morrell, B., Agha, A.: Towards resilient autonomous navigation of drones. In: International Symposium on Robotics Research (2019)

    Google Scholar 

  16. Agha-Mohammadi, A., Chakravorty, S., Amato, N.: FIRM: sampling-based feedback motion planning under motion uncertainty and imperfect measurements. Int. J. Robot. Res. 33(2), 268–304 (2014)

    Article  Google Scholar 

  17. Bouman, A., Ginting, M.F., Alatur, N., Palieri, M., Fan, D.D., Touma, T., Pailevanian, T., Kim, S.-K., Otsu, K., Burdick, J., Agha-Mohammadi, A.: Autonomous spot: long-range autonomous exploration of extreme environments with legged locomotion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1057–1064 (2020)

    Google Scholar 

  18. Ebadi, K., Chang, Y., Palieri, M., Stephens, A., Hatteland, A., Heiden, E., Thakur, A., Funabiki, N., Morrell, B., Wood, S., et al.: LAMP: large-scale autonomous mapping and positioning for exploration of perceptually-degraded subterranean environments. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 80–86. IEEE (2020)

    Google Scholar 

  19. Kramer, A., Stahoviak, C., Santamaria-Navarro, A., Agha-Mohammadi, A.-A., Heckman, C.: Radar-inertial ego-velocity estimation for visually degraded environments. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 5739–5746. IEEE (2020)

    Google Scholar 

  20. Tagliabue, A., Tordesillas, J., Cai, X., Angel Santamaria-Navarro, A., How, J.P., Carlone, L., Agha-Mohammadi, A.-A.: Lion: Lidar-inertial observability-aware navigator for vision-denied environments. In: International Symposium on Experimental Robotics (2020)

    Google Scholar 

  21. Agha-Mohammadi, A.-A., Heiden, E., Hausman, K., Sukhatme, G.: Confidence-rich grid mapping. Int. J. Robot. Res. 38(12–13), 1352–1374 (2017)

    Google Scholar 

  22. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robots 34(3), 189–206 (2013)

    Article  Google Scholar 

  23. Otsu, K., Tepsuporn, S., Thakker, R., Vaquero, T.S., Edlund, J.A., Walsh, W., Miles, G., Heywood, T., Wolf, M.T., Agha-Mohammadi, A.-A.: Supervised autonomy for communication-degraded subterranean exploration by a robot team. In: IEEE Aerospace Conference, pp. 1–9 (2020)

    Google Scholar 

  24. Himmelsbach, M., Hundelshausen, F.V., Wuensche, H.-J.: Fast segmentation of 3D point clouds for ground vehicles. In: Intelligent Vehicles Symposium (IV), 2010 IEEE, pp. 560–565. IEEE (2010)

    Google Scholar 

  25. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997)

    Article  Google Scholar 

  26. Rosmann, C., Hoffmann, F., Bertram, T.: Kinodynamic trajectory optimization and control for car-like robots, pp. 5681–5686 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Anushri Dixit and Joel Burdick for support with the Ackermann robot and members of Team CoSTAR for their hardware and testing support. The work is partially supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004), and Defense Advanced Research Projects Agency (DARPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhilesh Alatur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thakker, R. et al. (2021). Autonomous Off-Road Navigation over Extreme Terrains with Perceptually-Challenging Conditions. In: Siciliano, B., Laschi, C., Khatib, O. (eds) Experimental Robotics. ISER 2020. Springer Proceedings in Advanced Robotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-71151-1_15

Download citation

Publish with us

Policies and ethics