Skip to main content

Abstract

This work presents a mapping model of indoor work environments in mobile robotics, called Map-Bot. The model integrates hardware and software modules for navigation, data acquisition & transfer and mapping. Additionally, the model incorporates a computer that runs the software responsible for the construction of two-dimensional representations of the environment (Vespucci module), a mobile robot that collects sensory information from the workplace and a wireless communications module for data transfer between the computer and the robot. The results obtained allow the implementation of the reactive behavior “follow walls” located on its right side on paths of 560 cm. The model allowed to reach a safe and stable navigation for indoor work environments, using this distributed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboshosha A, Zell A (2003) Robust mapping and path planning for indoor robots based on sensor integration of sonar and a 2D laser range finder. In IEEE 7th international conference on intelligent engineering systems

    Google Scholar 

  • Acosta-Amaya GA, Acosta-Gil AF, Jimenez Builes JA (2020) Sistema robótico autónomo para la exploración y construcción de mapas en entornos estructurados. Investig e Innovación en Ing 8:69–84. https://doi.org/10.17081/invinno.8.1.3593

  • Acosta GA (2019) SLAM Monocular en tiempo real. Univ Nacional de Colombia, Medellín, Colombia

    Google Scholar 

  • Acosta GA (2010) Ambiente multi-agente robótico para la navegación colaborativa en escenarios estructurados. Univ Nacional de Colombia, Medellín, Colombia

    Google Scholar 

  • Ajeil FH, Ibraheem IK, Sahib MA, Humaidi AJ (2020) Multi-objective path planning of an autonomous mobile robot using hybrid PSO-MFB optimization algorithm. Appl Soft Comput J 89:106076. https://doi.org/10.1016/j.asoc.2020.106076

    Article  Google Scholar 

  • Al-Taharwa I, Sheta A, Al-Weshah M (2008) A mobile robot path planning using genetic algorithm in static environment. J Comput Sci 4:341–344. https://doi.org/10.3844/jcssp.2008.341.344

    Article  Google Scholar 

  • Andrade-Cetto J, Sanfeliu A (2001) Learning of dynamic environments by a mobile robot from stereo cues. In IEEE international conference on multisensor dusion and integration for intelligent systems, 305–310

    Google Scholar 

  • Betskov A V, Prokopyev I V, Ilinbaev AE (2019) Problem of cost function synthesis for mobile robot’s trajectory and the network operator method for its solution. In Procedia computer science. Elsevier B.V., pp 695–701

    Google Scholar 

  • Bouhoune K, Yazid K, Boucherit MS, Chériti A (2017) Hybrid control of the three phase induction machine using artificial neural networks and fuzzy logic. Appl Soft Comput J 55:289–301. https://doi.org/10.1016/j.asoc.2017.01.048

    Article  Google Scholar 

  • Bozhinoski D, Di Ruscio D, Malavolta I et al (2019) Safety for mobile robotic system: a systematic mapping study from a software engineering perspective. J Syst Softw 151:150–179. https://doi.org/10.1016/j.jss.2019.02.021

    Article  Google Scholar 

  • Budianto A, Pangabidin R, Syai’In M, et al (2017) Analysis of artificial intelligence application using back propagation neural network and fuzzy logic controller on wall-following autonomous mobile robot. In 2017 international symposium on electronics and smart devices, ISESD 2017. Institute of Electrical and Electronics Engineers Inc., pp 62–66

    Google Scholar 

  • Darintsev OV., Yudintsev BS, Alekseev AY, et al (2019) Methods of a heterogeneous multi-agent robotic system group control. In Procedia computer science. Elsevier B.V., pp 687–694

    Google Scholar 

  • Dufourd D (2005) Des cartes combinatoires pour la construction automatique de modèles d’environnement par un robot mobile. Institut National Polytechnique de Toulouse, France

    Google Scholar 

  • Habib MK (2007) Real time mapping and dynamic navigation for mobile robots. Int J Adv Robot Syst 4:35. https://doi.org/10.5772/5681

    Article  Google Scholar 

  • Islam N, Haseeb K, Almogren A et al (2020) A framework for topological based map building: a solution to autonomous robot navigation in smart cities. Futur Gener Comput Syst 111:644–653. https://doi.org/10.1016/j.future.2019.10.036

    Article  Google Scholar 

  • Jian Z, Qingyuan Z, Liying T (2020) Market revenue prediction and error analysis of products based on fuzzy logic and artificial intelligence algorithms. J Ambient Intell Humaniz Comput, 1–8

    Google Scholar 

  • Labidi S, Lajouad W (2004) De l-intelligence artificielle distribuée aux systèmes multi-agents. INRIA, France

    Google Scholar 

  • Li H, Savkin AV (2018) An algorithm for safe navigation of mobile robots by a sensor network in dynamic cluttered industrial environments. Robot Comput Integr Manuf 54:65–82. https://doi.org/10.1016/j.rcim.2018.05.008

    Article  Google Scholar 

  • McGuire KN, de Croon GCHE, Tuyls K (2019) A comparative study of bug algorithms for robot navigation. Rob Auton Syst 121:103261. https://doi.org/10.1016/j.robot.2019.103261

    Article  Google Scholar 

  • Minelli M, Panerati J, Kaufmann M et al (2020) Self-optimization of resilient topologies for fallible multi-robots. Rob Auton Syst 124:103384. https://doi.org/10.1016/j.robot.2019.103384

    Article  Google Scholar 

  • Shiguemi et al (2004) Simultaneous localization and map building by a mobile robot using sonar sensors. ABCM Symp Ser Mechatronics 1:115–223

    Google Scholar 

  • Souza J (2002) Cooperação entre robôs aéreos e terrestres em tarefas baseadas em visão. In Proceeding of SPG. Philippines, Manila, pp 135–147

    Google Scholar 

  • Thrun S, Burgard W, Fox D (2000) Real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In Proceedings—IEEE international conference on robotics and automation, pp 321–328

    Google Scholar 

  • Tiwari K, Chong Y (2020) Simultaneous localization and mapping (SLAM). In Multi-robot exploration for environmental monitoring. Elsevier, pp 31–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovani Alberto Jiménez-Builes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acosta-Amaya, G.A., Acosta-Gil, A.F., López-Velásquez, J., Jiménez-Builes, J.A. (2021). Map-Bot: Mapping Model of Indoor Work Environments in Mobile Robotics. In: Zapata-Cortes, J.A., Alor-Hernández, G., Sánchez-Ramírez, C., García-Alcaraz, J.L. (eds) New Perspectives on Enterprise Decision-Making Applying Artificial Intelligence Techniques. Studies in Computational Intelligence, vol 966. Springer, Cham. https://doi.org/10.1007/978-3-030-71115-3_4

Download citation

Publish with us

Policies and ethics