Skip to main content

Performance Analysis of Decision Aid Mechanisms for Hardware Bots Based on ELECTRE III and Compensatory Fuzzy Logic

  • Chapter
  • First Online:
New Perspectives on Enterprise Decision-Making Applying Artificial Intelligence Techniques

Abstract

The development of ubiquity in computing demands more intelligence from connected devices to perform tasks better. Users usually lookout for devices that proactively aid in an environment, making decisions as themselves. Such cognitive models for hardware agents have increased in recent years. However, although numerous strategies emulate intelligent behavior in hardware, some problems are still to overcome, such as developing a hardware agents’ preference system with small computing capabilities. The present research proposes two novel cognitive preference models viable for hardware with few memory cells and small processing capacity; it also analyzes the approaches’ achieved performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso MM, Espín Andrade RA, Batista VL, Suárez AR (2014) Discovering knowledge by fuzzy predicates in compensatory fuzzy logic using metaheuristic algorithms. Stud Comput Intell 537:161–174. https://doi.org/10.1007/978-3-642-53737-0_11

    Article  Google Scholar 

  • Andrade RAE, Fernández E, González E (2014) Compensatory fuzzy logic: a frame for reasoning and modeling preference knowledge in intelligent systems. Stud Comput Intell 537:3–23. https://doi.org/10.1007/978-3-642-53737-0_1

    Article  Google Scholar 

  • Arduino Blog (2020) Arduino Blog  » Simple machine learning with Arduino KNN. https://blog.arduino.cc/2020/06/18/simple-machine-learning-with-arduino-knn/. Accessed 11 Dec 2020

  • Benatti Moretti C (2020) Neurona-Arduino Libraries. https://www.arduinolibraries.info/libraries/neurona. Accessed 11 Dec 2020

  • Bisták P (2019) Arduino support for personalized learning of control theory basics. In: IFAC-PapersOnLine. Elsevier B.V., pp 217–221

    Google Scholar 

  • Bogantes Barrantes BG (2016) Desarrollo de la estructura necesaria para la implementación de un modelo de toma de decisiones para mantenimiento basado en el deterioro multiestado para el parque eólico los santos. Tecnológico de Costa Rica, Costa Rica

    Google Scholar 

  • Bouchet A, Pastore J, Brun M, Ballarin V (2010) Lógica Difusa Compensatoria basada en la media aritmética y su aplicación en la Morfología Matemática Difusa

    Google Scholar 

  • Cárdenas León A, Barranco Gutiérrez A, Pérez Pinal F (2016) Implementación de Sistema Difuso en Arduino Uno. Acad J Celaya 8:821–826

    Google Scholar 

  • Cejas Montero J (2011) The compensatory fuzzy logic. Rev Ing Ind 22:157–161

    Google Scholar 

  • Chaux Gutiérrez AF (2017) Monitoreo de anomalías en máquinas rotativas con agentes inteligentes Jade y Arduino. Institución Universitaria Politécnico

    Google Scholar 

  • Cruz-Reyes L, Fernandez E, Rangel-Valdez N (2017) A metaheuristic optimization-based indirect elicitation of preference parameters for solving many-objective problems. Int J Comput Intell Syst 10:56–77. https://doi.org/10.2991/ijcis.2017.10.1.5

    Article  Google Scholar 

  • D´Negri CE, Vito ED (2006) Introducción al razonamiento aproximado: lógica difusa. undefined

    Google Scholar 

  • de Jesús Rubio J (2017) A method with neural networks for the classification of fruits and vegetables. Soft Comput 21:7207–7220. https://doi.org/10.1007/s00500-016-2263-2

    Article  Google Scholar 

  • Delgado-Hernández XS, Morales-Rodriguez ML, Rangel-Valdez N et al (2020) Development of conversational deliberative agents driven by personality via fuzzy outranking relations. Int J Fuzzy Syst 22:2720–2734. https://doi.org/10.1007/s40815-020-00817-w

    Article  Google Scholar 

  • Espin-Andrade RA, Gonzalez E, Pedrycz W, Fernandez E (2016) An interpretable logical theory: the case of compensatory fuzzy logic. Int J Comput Intell Syst 9:612–626. https://doi.org/10.1080/18756891.2016.1204111

    Article  Google Scholar 

  • Espino Núñez A (2017) Control de temperatura con lógica difusa para un sistema espectroscopia laser. Universidad Nacional Autónoma de México

    Google Scholar 

  • Figueira JR, Greco S, Roy B, Słowiński R (2010) ELECTRE methods: main features and recent developments. Springer, Berli, pp 51–89

    Google Scholar 

  • García M, Candelo-Becerra JE, Hoyos FE (2019) Quality and defect inspection of green coffee beans using a computer vision system. Appl Sci 9:4195. https://doi.org/10.3390/app9194195

    Article  Google Scholar 

  • González Morcillo C (2011) Lógica Difusa, una introducción práctica. Técnicas de Softcomputing

    Google Scholar 

  • Llorente Peralta CE (2019) Algoritmo evolutivo para descubrir conocimiento de asociación usando lógica difusa compensatoria. TecNM/Instituto Tecnológico de Ciudad Madero

    Google Scholar 

  • Low ES, Ong P, Cheah KC (2019) Solving the optimal path planning of a mobile robot using improved Q-learning. Rob Auton Syst 115:143–161. https://doi.org/10.1016/j.robot.2019.02.013

    Article  Google Scholar 

  • Oltean G, Oltean V, Balea HA (2019) Method for rapid development of Arduino-based applications enclosing ANN. In: IECON proceedings (industrial electronics conference). IEEE computer society, pp 138–143

    Google Scholar 

  • Ortega Zamorano F (2015) Algoritmos de aprendizaje neurocomputacionales para su implementación hardware. Universidad de Málaga

    Google Scholar 

  • Parikh P, Sheth S, Vasani R, Gohil JK (2018) Implementing fuzzy logic controller and PID controller to a DC encoder motor-“a case of an automated guided vehicle.” In: Procedia manufacturing. Elsevier B.V., pp 219–226

    Google Scholar 

  • Pathoumvanh S, Bounnady K, Indahak P, Viravong V (2016) Implementation of the ECG biometric identification by using Arduino Microprocessor. In: 2016 13th international conference on electrical engineering/electronics, computer, telecommunications and information technology, ECTI-CON 2016. Institute of Electrical and Electronics Engineers Inc

    Google Scholar 

  • Racet-Valdés A, Espinosa-Gonzalez L, Suárez-Quintana J et al (2017) Modelo matemático para medir el nivel de servicio al cliente basado en la lógica difusa compensatoria. Rev Ing Ind 28:193–200

    Google Scholar 

  • Romero Vargas AB (2016) Sistema de Detección de Engaños basado en Redes Neuronales y Arduino. Universidad Mayor de San Andrés

    Google Scholar 

  • Roy B (1991) The outranking approach and the foundations of electre methods. Theory Decis 31:49–73. https://doi.org/10.1007/BF00134132

    Article  MathSciNet  Google Scholar 

  • Rubio JA, Ontañón M, Perea V, Megia A (2016) Health care of pregnant women with diabetes in Spain: approach using a questionnaire. Endocrinol y Nutr (English Ed 63:113–120. https://doi.org/10.1016/J.ENDOEN.2015.11.017

  • Ruiz J (2015) Métodos de Decisión Multicriterio ELECTRE y TOPSIS aplicados a la elección de un Dispositivo Movil. Universidad de Sevilla, Escuela Técnica Superior de Ingeniería

    Google Scholar 

  • Thote PB, Daigavane MB, Daigavane PM et al (2018) Hardware-in-loop implementation of ANN based differential protection of transformer. In: WIECON-ECE 2017-IEEE international WIE conference on electrical and computer engineering 2017. Institute of Electrical and Electronics Engineers Inc., pp 80–83

    Google Scholar 

Download references

Acknowledgements

The authors want to thank the support from CONACYT projects 3058 Cátedras CONACyT 2014, A1-S-11012 Ciencia Básica 2017–2018, and 312397 PAACTI 2020-1. Also thank the support from TecNM Project 5797.19-P, and from Laboratorio Nacional de Tecnologías de Información (LaNTI) del TecNM/Campus ITCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Rangel-Valdez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castillo-Ramírez, C., Rangel-Valdez, N., Gómez-Santillán, C., Lucila Morales-Rodríguez, M., Cruz-Reyes, L., Fraire-Huacuja, H.J. (2021). Performance Analysis of Decision Aid Mechanisms for Hardware Bots Based on ELECTRE III and Compensatory Fuzzy Logic. In: Zapata-Cortes, J.A., Alor-Hernández, G., Sánchez-Ramírez, C., García-Alcaraz, J.L. (eds) New Perspectives on Enterprise Decision-Making Applying Artificial Intelligence Techniques. Studies in Computational Intelligence, vol 966. Springer, Cham. https://doi.org/10.1007/978-3-030-71115-3_10

Download citation

Publish with us

Policies and ethics