Skip to main content

Mathematical Modeling and Computer Simulations of Cancer Chemotherapy

  • Conference paper
  • First Online:
Advances in Computer Vision and Computational Biology

Abstract

The fundamental clinical properties of cancer chemotherapy are investigated and demonstrated by utilizing a system of clinically plausible deterministic non-linear differential equations which depicts the pathophysiology of malignant cancers. In this mathematical model, the cytokinetic properties of normal cells, cancer cells, and the pharmacokinetics of the chemotherapy drug are described, respectively, by biophysically measurable growth parameters, stoichiometric rate constants and Michaelis–Menten type reaction profiles. Computer simulations have been conducted to elucidate various hypothetic scenarios when the model is configured with different parametric values, including the therapeutic efficacy of the use of stealth liposomes in high dose chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Adams, A mathematical model of tumor growth II: Effects of geometrical and spatial non-uniformity on stability. Math. Biosci. 86, 183–211 (1987)

    Article  Google Scholar 

  2. T.A. Allen, Stealth liposomes: Five years on. J. Liposome Res. 2(3), 289–305 (2008)

    Article  Google Scholar 

  3. H. Amann, Ordinary Differential Equations (An Introduction to Non-Linear Analysis) (Walter de Gruyter, New York, 1990), pp. 200–265

    Book  Google Scholar 

  4. O. Arino, M. Kimmel, Asymptotic analysis of cell cycle models based on unequal division. SIAM J. Appl. Math. 47, 128–145 (1987)

    Article  MathSciNet  Google Scholar 

  5. J.L. Bos, The ras oncogene family and human carcinogenesis. Mutat. Res. 195, 255–271 (1988)

    Article  Google Scholar 

  6. B. Čeh, M. Winterhalter, P.M. Frederick, et al., Stealth Liposomes from theory to product. Adv. Drug Deliv. Rev. 24(2–3), 165–177 (1997)

    Google Scholar 

  7. M. Eisen, Mathematical models in cell biology and cancer chemotherapy, in Lecture Notes in Biomathematics, vol. 40, (Springer, Bew Youk, 1979), pp. 122–218

    Google Scholar 

  8. E. Frei III, Curative cancer chemotherapy. Cancer Res. 45, 6523–6548 (1985)

    Google Scholar 

  9. C. Gamkke, A. Hall, C. Moroni, Activation of an N-ras gene in acute myeloblastic leukaemia. Proc. NaH. Acad. Sci. 82, 879–882 (1984)

    Google Scholar 

  10. R.A. Gatenby, Models of tumor-host interaction as competing populations: Implications for tumor biology and treatment. J. Theor. Biol. 176, 447–455 (1995)

    Article  Google Scholar 

  11. Genetech, Stages of NSCLC. (2007).. Retrieved January 17, 2008, from http://www.avastin.com/avastin/patient/lung/learn/stages/index.m

  12. M. Gyllenberg, K. Woo, G.F. Webb, Age-structure in tumor populations with quiescence. Math. Biosci. 86, 67–95 (1987)

    Article  MathSciNet  Google Scholar 

  13. M. Kim, K.B. Woo, S. Perry, Quantitative approach to the design of anti-tumor drug dosage schedule via cell cycle kinetics and systems theory. Ann. Biomed. Eng. 5, 12 (1977)

    Article  Google Scholar 

  14. H. Knolle, Cell kinetic modeling and the chemotherapy of cancer, in Lecture Notes in Biomathematics, vol. 75, (Springer, New York, 1988)

    Google Scholar 

  15. L.A. Liotta, Cancer cell invasion and metastasis. Sci. Am. 1992, 54–63 (1992)

    Article  Google Scholar 

  16. F. Mastrotto, C. Brazzale, F. Bellato, et al., In vitro and in vivo behavior of liposomes decorated with PEGs with different chemical features. Mol. Pharm. 17(2), 472–487 (2020)

    Google Scholar 

  17. S. Michelson, J.T. Leith, Growth factors and growth control of heterogeneous cell populations. Bull. Math. Biol. 55, 993–1011 (1993)

    Article  Google Scholar 

  18. F.K. Nani, Models of Chemotherapy and Immunotherapy (Doctoral Thesis, University of Alberta, 1998) (1998)

    Google Scholar 

  19. F.K. Nani, M.N. Oguztoreli, Modeling and simulation of liposomal drug delivery to the central nervous system, in Biomedical Modelling and Simulation, ed. by J. Eisenfeld, D. S. Levine, M. Witten, (Elsevier Science Publishers B. V., North-Holland, London, 1992), pp. 351–367

    Google Scholar 

  20. A. Neri et al., Analysis of ras oncogene mutations in human lymphoid malignancies. Proc. Batl. Acad. Sci. 85, 9268–9272 (1988)

    Article  Google Scholar 

  21. M.N. Oguztoreli, C.P. Tsokos, J. Akabutu, A kinetic study of chemotherapy. Appl. Math. Comput. 12, 255–300 (1983)

    MathSciNet  MATH  Google Scholar 

  22. J.C. Panetta, A mathematical model of periodically pulsed chemotherapy: Tumor recurrence and metastasis in a competitive environment. Bull. Math. Biol. 58, 425–447 (1996)

    Article  Google Scholar 

  23. M. C. Perry (ed.), The Chemotherapy Sourcebook (Williams and Wilkins, Baltimore, 1992), pp. 213–220

    Google Scholar 

  24. H.G. Pitot, Fundamentals of Oncology (Marcel Dekker, New York, 1986)

    Google Scholar 

  25. G.E. Swan, Tumor growth models and cancer chemotherapy, in Cancer Modelling, ed. by F. R. Thompson, B. W. Brown, (New York, Marcel-Dekker, 1987), pp. 91–180

    Google Scholar 

  26. S.L. Weekes, B. Barker, S. Bober, et al., A multi-component mathematical model of cancer stem cell driven tumor growth dynamics. Bull. Math. Biol. 76(7), 1762–1782 (2014)

    Article  MathSciNet  Google Scholar 

  27. T.E. Wheldon, Mathematical Models in Cancer Research (Adam Hilger, Bristol, 1988), pp. 67–82

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxian Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nani, F., Jin, M. (2021). Mathematical Modeling and Computer Simulations of Cancer Chemotherapy. In: Arabnia, H.R., Deligiannidis, L., Shouno, H., Tinetti, F.G., Tran, QN. (eds) Advances in Computer Vision and Computational Biology. Transactions on Computational Science and Computational Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-71051-4_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71051-4_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71050-7

  • Online ISBN: 978-3-030-71051-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics