Skip to main content

Classification of Craniosynostosis Images by Vigilant Feature Extraction

  • Conference paper
  • First Online:
Advances in Computer Vision and Computational Biology

Abstract

The development of an objective algorithm to assess craniosynostosis has the potential to facilitate early diagnosis, especially for care providers with limited craniofacial expertise. In this study, we process multiview 2D images of infants with craniosynostosis and healthy controls by computer-based classifiers to identify disease. We develop two multiview image-based classifiers, first based on traditional machine learning (ML) with feature extraction, and the other one based on CNNs. The ML model performs slightly better (accuracy 91.7%) than the CNN model (accuracy 90.6%), likely due to the availability of a small image dataset for model training and superiority of the ML features in differentiation of craniosynostosis subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Agarwal, R.R. Hallac, R. Mishra, C. Li, O. Daescu, A. Kane, Image based detection of craniofacial abnormalities using feature extraction by classical convolutional neural network, in 2018 IEEE 8th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS) (IEEE, Piscataway, 2018)

    Google Scholar 

  2. Q. Cao, L. Shen, W. Xie, O.M. Parkhi, A. Zisserman, Vggface2: a dataset for recognising faces across pose and age, in International Conference on Automatic Face and Gesture Recognition (2018)

    Google Scholar 

  3. J. Cho, K. Lee, E. Shin, G. Choy, S. Do, How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? (2015, preprint). arXiv:1511.06348

    Google Scholar 

  4. M. Cho, A. Kane, J. Seaward, R. Hallac, Metopic “ridge” vs. “craniosynostosis”: quantifying severity with 3d curvature analysis. J. Cranio-Maxillo-Facial Surg. 44(9), 1259–1265 (2016). https://doi.org/10.1016/j.jcms.2016.06.019

  5. M.J. Cho, R.R. Hallac, M. Effendi, J.R. Seaward, A.A. Kane, Comparison of an unsupervised machine learning algorithm and surgeon diagnosis in the clinical differentiation of metopic craniosynostosis and benign metopic ridge. Sci. Rep. 8(1), 6312 (2018)

    Google Scholar 

  6. S. Cronqvist, Roentgenologic evaluation of cranial size in children: a new index. Acta Radiologica. Diagnosis 7(2), 97–111 (1968). https://doi.org/10.1177/028418516800700201

    Article  Google Scholar 

  7. N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1 (IEEE, Piscataway, 2005), pp. 886–893

    Google Scholar 

  8. J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, L. Fei-Fei, ImageNet: a large-scale hierarchical image database, in Conference on Computer Vision and Pattern Recognition CVPR09 (2009)

    Google Scholar 

  9. A. Fitzgibbon, M. Pilu, R.B. Fisher, Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)

    Article  Google Scholar 

  10. R.M. Garza, R.K. Khosla, Nonsyndromic craniosynostosis, in Seminars in Plastic Surgery, vol. 26 (Thieme Medical Publishers, New York, 2012), pp. 053–063

    Google Scholar 

  11. R.R. Hallac, B.M. Dumas, J.R. Seaward, R. Herrera, C. Menzies, A.A. Kane, Digital images in academic plastic surgery: a novel and secure methodology for use in clinical practice and research. Cleft Palate-Craniofacial J. 56(4), 552–555 (2019)

    Article  Google Scholar 

  12. R.R. Hallac, J. Lee, M. Pressler, J.R. Seaward, A.A. Kane, Identifying ear abnormality from 2d photographs using convolutional neural networks. Sci. Rep. 9(1), 1–6 (2019)

    Article  Google Scholar 

  13. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778

    Google Scholar 

  14. D. Johnson, A.O. Wilkie, Craniosynostosis. Eur. J. Hum. Genet. 19(4), 369–376 (2011)

    Article  Google Scholar 

  15. V. Kazemi, J. Sullivan, One millisecond face alignment with an ensemble of regression trees, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014), pp. 1867–1874

    Google Scholar 

  16. S. Khan, N. Islam, Z. Jan, I.U. Din, J.J.C. Rodrigues, A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognit. Lett. 125, 1–6 (2019)

    Article  Google Scholar 

  17. W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, F.E. Alsaadi, A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)

    Article  Google Scholar 

  18. S.J. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  19. R.R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, D. Batra, Grad-cam: why did you say that? Visual explanations from deep networks via gradient-based localization. CoRR abs/1610.02391 (2016). http://arxiv.org/abs/1610.02391

  20. J. Shillito, D.D. Matson, Craniosynostosis: a review of 519 surgical patients. Pediatrics 41(4), 829–853 (1968)

    Google Scholar 

  21. H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller, Multi-view convolutional neural networks for 3d shape recognition, in Proceedings of the IEEE International Conference on Computer Vision (2015), pp. 945–953

    Google Scholar 

  22. F. Ursitti, T. Fadda, L. Papetti, M. Pagnoni, F. Nicita, G. Iannetti, A. Spalice, Evaluation and management of nonsyndromic craniosynostosis. Acta Paediatr. 100(9), 1185–1194 (2011)

    Article  Google Scholar 

  23. P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR2001, vol. 1 (IEEE, Piscataway, 2001), p. I

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saloni Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agarwal, S., Hallac, R.R., Daescu, O., Kane, A. (2021). Classification of Craniosynostosis Images by Vigilant Feature Extraction. In: Arabnia, H.R., Deligiannidis, L., Shouno, H., Tinetti, F.G., Tran, QN. (eds) Advances in Computer Vision and Computational Biology. Transactions on Computational Science and Computational Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-71051-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71051-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71050-7

  • Online ISBN: 978-3-030-71051-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics