Skip to main content

Kaldor–Kalecki New Model on Business Cycles

  • Chapter
  • First Online:
Nonlinearities in Economics

Abstract

R.G. Goodwin mentioned that “economists will be led, as natural scientists have been led, to seek in nonlinearities an explanation of the maintenance of oscillation” (Goodwin, Econometrica 19(1), 1951); following this reasoning, we studied business cycles as if they were generated by nonlinear differential equations which prove that the proposed model exhibits chaotic behavior.

The main goal of this chapter is to study chaotic behaviour within Kaldor’s framework described in Chap. 12. In the following, we suggest an alternative to the usual models in the literature. Our approach is consistent with chaotic dynamics and adheres to the Kaldorian specifications. This is obtained by declaring that investment and saving functions, I and S respectively are: nonlinear, regular, increasing (or at least not decreasing) whilst capital and income are growing. This is achieved by a new functional specification of the investment and consumption as variants of the hyperbolic tangent rather than the usual arctangent available in literature. Apart from a full set of parameters useful for calibrations, an additional feature of this model is the ability to embed randomness. The latter opens the way to a mixture of stochastic and deterministic chaos.

Part of this chapter has appeared in [27, 28].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For further considerations regarding this topic see Sect. A.2.

References

  1. Adachi, M.: Embeddings and Immersions. American Mathematical Society, Providence (1993)

    Google Scholar 

  2. Agliari, A., Dieci, R., Gardin, L.: Homoclinic tangles in a Kaldor-like business cycle model. J. Econo. Behav. Organ. 62, 324–347 (2007)

    Article  Google Scholar 

  3. Arya, S., Mount, D.M.: Approximate nearest neighbor searching. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’93), pp. 271–280 (1993)

    Google Scholar 

  4. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching. J. ACM 45(6), 891–923 (1998)

    Article  Google Scholar 

  5. Bischi, G.I., Dieci, R., Rodano, G., Saltari, E.: Multiple attractors and global bifurcations in a Kaldor-type business cycle model. J. Evol. Econ. 11, 527–554 (2001)

    Article  Google Scholar 

  6. Bradford, R., Davenport, J.H.: Towards Better Simplification of Elementary Functions. In: ISSAC ’02 Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pp. 16–22. ACM, New York (2002)

    Google Scholar 

  7. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D 110, 43–50 (1997)

    Article  Google Scholar 

  8. Cao, L.: Determining minimum embedding dimension from scalar time series. In: Soofi, A., Cao, L. (eds.) Modelling and Forecasting Financial Data. Studies in Computational Finance, vol. 2, pp. 43–60. Springer, New York (2002). https://doi.org/10.1007/978-1-4615-0931-8_3

    Chapter  Google Scholar 

  9. Collicott, S.H.: Never trust an arctangent (2012). https://engineering.purdue.edu/~collicot/NTAA_files/Chapter1.pdf

  10. Gonnet, G.H., Scholl, R.: Scientific Computation. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  11. Grassberger, P.: Estimating the fractal dimension and entropies of strange attractors. In: Holden, A.V. (ed.) Chaos, pp. 291–311. Manchester University Press, Manchester (1986)

    Chapter  Google Scholar 

  12. Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983)

    Article  Google Scholar 

  13. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D 9, 189–208 (1983)

    Article  Google Scholar 

  14. Januaarioa, C., Graaciob, C., Duartea, J.: Measuring complexity in a business cycle model of the Kaldor type. Chaos Solitons Fractals 42(5), 2890–2903 (2009)

    Article  Google Scholar 

  15. Januario, C., Gracio, C., Ramos, J.S.: Chaotic behaviour in a two-dimensional business cycle model. In: Elaydi, S., Cushing, J., Lasser, R., Ruffing, A., Papageorgiou, V., Assche, W.V. (eds.) Proceedings of the International Conference, Difference Equations, Special Functions and Orthogonal Polynomials, pp. 294–304. Munich (2005)

    Google Scholar 

  16. Kaddar, A., Alaoui, H.T.: Global existence of periodic solutions in a delayed Kaldor–Kalecki model. Nonlinear Anal. Model. Control 14(4), 463–472 (2009)

    Article  Google Scholar 

  17. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47(2), 263–292 (1979)

    Article  Google Scholar 

  18. Kaldor, N.: A model of trade cycle. Econ. J. 50(197), 78–92 (1940)

    Article  Google Scholar 

  19. Kalecki, M.: A macrodynamic theory of business cycles. Econometrica 3(3), 327–344 (1935)

    Article  Google Scholar 

  20. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403–3411 (1992)

    Article  Google Scholar 

  21. Lei, M., Meng, G.: Symplectic principal component analysis: a new method for time series analysis. Math. Probl. Eng. 2011 (2011)

    Google Scholar 

  22. Lei, M., Wang, Z., Feng, Z.: A method of embedding dimension estimation based on symplectic geometry. Phys. Lett. A 303(2–3), 179–189 (2002)

    Article  Google Scholar 

  23. Lorenz, H.W.: Nonlinear Dynamical Economics and Chaotic Motion, 2nd edn. edn. Springer, Berlin (1993)

    Google Scholar 

  24. McBurnett, M.: Probing the underlying structure in dynamical systems: an introduction to spectral analysis, chap. 2, pp. 31–51. The University of Michigan Press (1996)

    Google Scholar 

  25. Mircea, G., Neamt, M., Opris, D.: The Kaldor and Kalecki stochastic model of business cycle, nonlinear analysis: modelling and control. J. Atmos. Sci. 16(2), 191–205 (1963)

    Google Scholar 

  26. Moon, F.C.: Chaotic Vibrations: An Introduction for Applied Scientists and Engineers. Wiley, New York (1987)

    Google Scholar 

  27. Orlando, G.: Chaotic business cycles within a Kaldor–Kalecki Framework. In: Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors (2018). https://doi.org/10.1007/978-3-319-71243-7_6

  28. Orlando, G.: A discrete mathematical model for chaotic dynamics in economics: Kaldor’s model on business cycle. Math. Comput. Simul. 125, 83–98 (2016). https://doi.org/10.1016/j.matcom.2016.01.001

    Article  Google Scholar 

  29. Palus, M., Dvorak, I.: Singular-value decomposition in attractor reconstruction: Pitfalls and precautions. Phys. D 55(1–2), 221–234 (1992)

    Article  Google Scholar 

  30. Rosin, P.L.: Measuring sigmoidality. Pattern Recogn. 37(8), 1735–1744 (2004)

    Article  Google Scholar 

  31. Schouten, J., Takens, F., van den Bleek, C.: Estimation of the dimension of a noisy attractor. Phys. Rev. E 50(3), 1851–1861 (1994)

    Article  Google Scholar 

  32. Schouten, J., Takens, F., van den Bleek, C.: Maximum-likelihood estimation of the entropy of an attractor. Phys. Rev. E 49(1), 126–129 (1994)

    Article  Google Scholar 

  33. Schouten, J.C., den Bleek, C.M.V.: RRChaos, software package for analysis of (experimental) chaotic time series (1993). http://reactorresearch.nl/handleidingen/rrchaos/rrchaos.php

  34. Stoica, P., Moses, R.: Spectral Analysis of Signals. Prentice Hall, Englewood Cliffs (2005)

    Google Scholar 

  35. Stoop, R., Meier, P.: Evaluation of Lyapunov exponents and scaling functions from time series. J. Opt. Soc. Am. B 5(5), 1037–1045 (1988)

    Article  Google Scholar 

  36. Stoop, R., Parisi, J.: Calculation of Lyapunov exponents avoiding spurious elements. Phys. D: Nonlinear Phenom. 50(1), 89–94 (1991)

    Article  Google Scholar 

  37. Takens, F.: Dynamical systems and turbulence. In: Lecture Notes in Mathematics, vol. 898, chap. Detecting Strange Attractors in Turbulence, pp. 366–381. Springer, Berlin (1981)

    Google Scholar 

  38. Theiler, J.: Estimating fractal dimension. J. Opt. Soc. Am. A 7(6), 1055–1073 (1990)

    Article  Google Scholar 

  39. Walter, F.S.: Waves and Oscillations: A Prelude to Quantum Mechanics. Oxford University Press, Oxford (2010)

    Google Scholar 

  40. Whitney, H.: Hassler whitney collected papers. In: Eells, J., Toledo, D. (eds.) Hassler Whitney Collected Papers. Contemporary Mathematicians, vols. I, II. Birkhäuser, Basel-Boston-Stuttgart (1992)

    Google Scholar 

  41. Wolf, A.: Quantifying chaos with Lyapunov exponents. In: Holden, A.V. (ed.) Chaos, pp. 273–290. Manchester University Press, Manchester (1986)

    Chapter  Google Scholar 

  42. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov Exponents From a Time Series. Phys. D. 16, 285–317 (1985)

    Article  Google Scholar 

  43. Xie, H., Wang, Z., Huang, H.: Identification determinism in time series based on symplectic geometry spectra. Phys. Lett. A 342(1–2), 156–161 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Orlando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orlando, G. (2021). Kaldor–Kalecki New Model on Business Cycles. In: Orlando, G., Pisarchik, A.N., Stoop, R. (eds) Nonlinearities in Economics. Dynamic Modeling and Econometrics in Economics and Finance, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-70982-2_16

Download citation

Publish with us

Policies and ethics