Skip to main content

Hemodynamics

  • Chapter
  • First Online:
Vascular Biomechanics
  • 1712 Accesses

Abstract

This chapter addresses the flow of blood in conduit vessels. We review the composition of blood, a suspension of different-sized particles in plasma, and investigate the forces that act upon said particles. It results in the description of the rheological properties of blood, where single-phasic and bi-phasic models are covered. We then explore blood damage mechanisms with focus on hemolysis and abnormal thrombocyte activation. A key section of this chapter concerns the description of incompressible flows by solving the Navier-Stokes equations for a number of 1D flows. It results in the description of steady-state and steady-periodic flows through circular tubes —the Poiseuille and respective Womersley flows. The exploration of the flow in elastic tubes reveals the expression of the wave speed, an important biomechanical property linked to the condition of the vascular system. Multidimensional flow phenomena, the characteristics of boundary layer flow and the difference between laminar, transitional and turbulent flow are then specified. Wall Shear Stress-related (WSS-related) and transport-related flow parameters, values used in the quantitative description of blood flows, are then addressed. A case study uses the Finite Element Method (FEM) to predict the blood flow in the aneurysmatic aorta, and concluding remarks summarize the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Erik Adolf von Willebrand, Finish internist, 1870–1949.

  2. 2.

    Sir George Gabriel Stokes, Irish physicist and mathematician, 1819–1903.

  3. 3.

    Robert Brown, Scottish botanist and palaeobotanist, 1773–1858.

  4. 4.

    Robert FĂ¥hræus, Swedish clinical professor and pathologist, 1888–1968.

  5. 5.

    Maurice Marie Alfred Couette, French physicist, 1858–1943.

  6. 6.

    Henry Eyring, Mexican-born American theoretical chemist, 1901–1981.

  7. 7.

    Daniel Bernoulli, Swiss mathematician and physicist, 1700–1782.

  8. 8.

    Friedrich Wilhelm Bessel, German astronomer, mathematician, physicist, and geodesist, 1784–1846.

  9. 9.

    John Ronald Womersley, British mathematician and computer scientist, 1907–1958.

  10. 10.

    John Crighton Bramwell, British cardiologist, 1889–1976.

  11. 11.

    Archibald Vivian Hill, British physiologist, 1886–1977.

  12. 12.

    Adriaan Isebree Moens, Dutch physiologist, 1846–1891.

  13. 13.

    Diederik Johannes Korteweg, Dutch mathematician, 1848–1941.

  14. 14.

    Andrey Nikolaevich Kolmogorov, Russian mathematician, 1903–1987.

References

  1. P.A. Aarts, S.A. van den Broek, G.W. Prins, G.D. Kuiken, J.J. Sixma, R.M. Heethaar, Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis 8, 819–824 (1988)

    Article  CAS  PubMed  Google Scholar 

  2. F. Ahmed, M. Mehrabadi, Z. Liu, G.A. Barabino, C.K. Aidun, Internal viscosity-dependent margination of red blood cells in microfluidic channels. J. Biomed. Eng. 140, 2605–2607 (2018)

    Google Scholar 

  3. M. Bäck, T.C. Gasser, J.-B. Michel, G. Caligiuri, Review. biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc. Res. 99, 232–241 (2013)

    Google Scholar 

  4. C.C.F.M.J. Baaten, H.T. Cate, P.E.J. van der Meijden, J.W.M. Heemskerk, Platelet populations and priming in hematological diseases. Blood Rev. 31, 389–399 (2017)

    Google Scholar 

  5. O. Baskurt, B. Neu, H. Meiselman, Red Blood Cell Aggregation (CRC Press, Boca Raton, 2011)

    Book  Google Scholar 

  6. N. Berg, L. Fuchs, L. Prahl Wittberg, Blood flow simulations of the renal arteries—effect of segmentation and stenosis removal. Flow Turbulence Combust 102, 27–41 (2019)

    Article  Google Scholar 

  7. J. Biasetti, F. Hussain, T.C. Gasser, Blood flow and coherent vortices in the normal and aneurysmatic aortas. A fluid dynamical approach to Intra-Luminal Thrombus formation. J. R. Soc. Interface 8, 1449–1461 (2011)

    PubMed  Google Scholar 

  8. J. Biasetti, P.G. Spazzini, T.C. Gasser, An integrated fluido-chemical model towards modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms. Front. Physiol. 3, 266 (2011)

    Google Scholar 

  9. D. Bluestein, E. Rambod, M. Gharib, Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. ASME. J. Biomech. Eng. 122, 125–134 (2000)

    Article  CAS  Google Scholar 

  10. S. Bozzi, U. Morbiducci, D. Gallo, R. Ponzini, G. Rizzo, C. Bignardi, G. Passoni, Uncertainty propagation of phase contrast-MRI derived inlet boundary conditions in computational hemodynamics models of thoracic aorta. Comput. Meth. Biomech. Biomed. Eng. 20, 1104–1111 (2017)

    Article  Google Scholar 

  11. D.E. Brooks, J.W. Goodwin, G.V. Seaman, Interactions among erythrocytes under shear. J. Appl. Physiol. 28, 172–177 (1970)

    Article  CAS  PubMed  Google Scholar 

  12. I. Cantat, C. Misbah, Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys. Rev. Lett. 83, 880–883 (1999)

    Article  CAS  Google Scholar 

  13. C.G. Caro, D.J. Doorly, M. Tarnawaski, K.T. Scott, Q. Long, C.L. Dumoulin, Non-planar curvature and branching of arteries and non-planar type flow. Proc. R. Soc. Lond. A 452, 185–197 (1996)

    Article  Google Scholar 

  14. N. Casson, A Flow Equation for Pigment Oil-Suspensions of the Printing Ink Type (Pergamon Press, Oxford, 1959)

    Google Scholar 

  15. Y.S. Chatzizisis, A.U. Coskun, M. Jonas, E.R. Edelman, C.L. Feldman, P.H. Stone, Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49(25), 2379–2393 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. E.M. Cherry, J.K. Eaton, Shear thinning effects on blood flow in straight and curved tubes. Phys. Fluids 25, 073104 (2013). https://doi.org/10.1063/1.4816369

    Article  CAS  Google Scholar 

  17. S. Chien, Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168, 977–979 (1970)

    Article  CAS  PubMed  Google Scholar 

  18. C. Chnafa, Using image-based large-eddy simulations to investigate the intracardiac flow and its turbulent nature. Ph.D. thesis, Universite de Montpellier, Montpellier, France, 2014

    Google Scholar 

  19. G.R. Cokelet, J.R. Brown, S.L. Codd, J.D. Seymour, Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer. Biorheology 42, 385–399 (2005)

    PubMed  Google Scholar 

  20. G. Colantuoni, J.D. Hellums, J.L. Moake, C.P. Alfrey Jr., Response of human platelets to shear stress at short exposure times. Trans. Am. Soc. Artif. Intern. Organs 23, 626–630 (1977)

    Article  CAS  PubMed  Google Scholar 

  21. W.R. Dean, Fluid motion in a curved channel. Proc. R. Soc. Lond. A 121, 402–420 (1928)

    Article  Google Scholar 

  22. P. Di Achille, G. Tellides, C.A. Figueroa, J.D. Humphrey, A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms. Proc. R. Soc. Lond. A 470, 20140163 (2014)

    Google Scholar 

  23. J. Ding, S. Niu, Z. Chen, T. Zhang, B.P. Griffith, Z.J. Wu, Shear-induced hemolysis: species differences. Artif. Organs 30, 419–429 (2015)

    Google Scholar 

  24. D. Doorly, S. Sherwin, Geometry and flow, in Cardiovascular Mathematics, ed. by L. Formaggia, A. Quarteroni, A. Veneziani. MS&A, vol. 1 (Springer, Milan, 2009), pp. 177–209

    Google Scholar 

  25. R. FĂ¥hræus, The suspension stability of the blood. Physiol. Rev. 9, 241–274 (1929)

    Article  Google Scholar 

  26. R. FĂ¥hræus, T. Lindqvist, The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96, 562–568 (1931)

    Article  Google Scholar 

  27. A. Fasano, A. Sequeira, Hemomath—The Mathematics of Blood (Springer, Berlin, 2017)

    Book  Google Scholar 

  28. D.A. Fedosov, M. Dao, G.E. Karniadakis, S. Suresh, Computational biorheology of human blood flow in health and disease. Ann. Biomed. Eng. 42, 368–387 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  29. C.M. Fleeter, G. Geraci, D.E. Schiavazzi, A.M. Kahnd, A.L. Marsden, Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics. Comput. Methods Appl. Mech. Eng., 365 (2020)

    Google Scholar 

  30. D. Flormann, K. Schirra, T. Podgorski, C. Wagner, On the rheology of red blood cell suspensions with different amounts of dextran: separating the effect of aggregation and increase in viscosity of the suspending phase. Rheol. Acta 55, 477–483 (2016)

    Article  CAS  Google Scholar 

  31. K.H. Fraser, T. Zhang, M.E. Taskin, B.P. Griffith, Z.J. Wu, A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: Shear stress, exposure time and hemolysis index. J. Biomed. Eng. 134, 081002 (2012)

    Google Scholar 

  32. H. Fu, Y. Jiang, D. Yang, F. Scheiflinger, W.P. Wong, T.A. Springer, Flow-induced elongation of von Willebrand factor precedes tension-dependent activation. Nat. Commun. 8, 324 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. G. Fuchs, N. Berg, L.M. Broman, L. Prahl Wittberg, Modeling sensitivity and uncertainties in platelet activation models applied on centrifugal pumps for extracorporeal life support. Sci. Reports 9, 8809 (2019)

    Google Scholar 

  34. G. Fuchs, N. Berg, L. Prahl Wittberg, Pulsatile aortic blood flow—a critical assessment of boundary conditions. J. Engr. Mech. 4, 011002 (2021)

    Google Scholar 

  35. M.T. Gallagher, R.A.J. Wain, S. Dari, J.P. Whitty, D.J. Smith, Non-identifiability of parameters for a class of shear-thinning rheological models, with implications for haematological fluid dynamics. J. Biomech. 85, 230–238 (2019)

    Article  CAS  PubMed  Google Scholar 

  36. D. Gallo, G. De Santis, F. Negri, D. Tresoldi, R. Ponzini, D. Massai, M.A. Deriu, P. Segers, B .Verhegghe, G. Rizzo, U. Morbiducci, On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow. Ann. Biomed. Eng. 40, 729–741 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. A.A. Gavrilov, K.A. Finnikov, Y.S.Ignatenko, O.B. Bocharov, R. May, Drag and lift forces acting on a sphere in shear flow of power-law fluid. Fluid. J. Engin. Thermophys. 27, 474–488 (2018)

    Article  CAS  Google Scholar 

  38. M. Giersiepen, L.J. Wurzinger, R. Opitz, H. Reul, Estimation of shear stress-related blood damage in heart valve prosthesis. In vitro comparison of 25 aortic valves. Int. J. Artificial Organs 13, 300–306 (1990)

    Google Scholar 

  39. H.L Goldsmith, J.C Marlow, Flow behavior of erythrocytes. II. particle motions in concentrated suspensions of ghost cells. J. Colloid Interface Sci. 71, 383–407 (1979)

    Google Scholar 

  40. P. Gondret, L. Petit, Dynamic viscosity of macroscopic suspensions of bimodal sized solid spheres. J. Rheol. 41, 1261–1274 (1997)

    Article  CAS  Google Scholar 

  41. L. Goubergrits, K. Affeld, Numerical estimation of blooddamage in artificial organs. Artif. Organs 28, 499–507 (2004)

    Article  PubMed  Google Scholar 

  42. L. Gustafsson, L. Appelgren, H.E. Myrvold, Effects of increased plasma viscosity and red blood cell aggregation on blood viscosity in vivo. Am. J. Physiol. 241, H513–18 (1981)

    CAS  PubMed  Google Scholar 

  43. J.D. Hellums, 1993 Whitaker lecture: Biorheology in thrombosis research. Ann. Biomed. Eng. 22, 445–455 (1994)

    Article  CAS  PubMed  Google Scholar 

  44. G. Heuser, R.A. Opitz, A Couette viscometer for short timeshearing of blood. Biorheology 17, 17–24 (1980)

    Article  CAS  PubMed  Google Scholar 

  45. B.P. Ho, L.G. Leal, Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65, 365–400 (1974)

    Article  Google Scholar 

  46. D.R. Hose, P.V. Lawford, W. Huberts, L.R. Hellevik, S.W. Omholt, F.N. van de Vosse, Cardiovascular models for personalised medicine: where now and where next? Med. Eng. Phys. 72, 38–48 (2019)

    Article  PubMed  Google Scholar 

  47. S.J. Hund, M.V. Kameneva, J.F. Antaki, A quasi-mechanistic mathematical representation for blood viscosity. Fluids 2(1), 10 (2017)

    Google Scholar 

  48. F. Hussain, Coherent structures and turbulence. J. Fluid Mech. 173, 303–356 (1986)

    Article  CAS  Google Scholar 

  49. J. Jeong, F. Hussain, On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  Google Scholar 

  50. A. Kheradvar, C. Rickers, D. Morisawa, M. Kim, G.-R. Hong, G. Pedrizzetti, Diagnostic and prognostic significance of cardiovascular vortex formation. J. Cardiol. 74, 403–411 (2019)

    Article  PubMed  Google Scholar 

  51. P.J. Kilner, G.Z. Yang, R.H. Mohiaddin, D.N. Firmin, D.B. Longmore, Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88, 2235–2247 (1993)

    Article  CAS  PubMed  Google Scholar 

  52. A. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Doklady Akademiia Nauk SSSR 30, 301–305 (1941)

    Google Scholar 

  53. I.M. Krieger, T.J. Dougherty, A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheo. 3, 137–152 (1959)

    Article  CAS  Google Scholar 

  54. P.K. Kundu, I.M. Cohen, Fluid mechanics, 4th edn. (Academic Press, London, 2008)

    Google Scholar 

  55. D. Lacasse, A. Garon, D. Pelletier, Mechanical hemolysis in blood flow: user-independent predictions with the solution of a partial differential equation. Comput. Meth. Biomech. Biomed. Eng. 10, 1–12 (2007)

    Article  Google Scholar 

  56. A.S. Les, J.J. Yeung, G.M. Schultz, R.J. Herfkens, R.L. Dalman, C.A. Taylor, Supraceliac and infrarenal aortic flow in patients with abdominal aortic aneurysms: mean flows, waveforms, and allometric scaling relationships. Cardiovasc. Eng. Technol. (2010). https://doi.org/10.1007/s13239-010-0004-8

  57. W. Lyne, Unsteady viscous flow in a curved pipe. J. Fluid Mech. 45, 13–31 (1971)

    Article  Google Scholar 

  58. D.A. McDonald, Blood Flow in Arteries, 6th edn. (Edward Arnold, London, 2011)

    Google Scholar 

  59. A.I. Moens, Die Pulskurve (E.J. Brill, Leiden, 1878)

    Google Scholar 

  60. M.R. Najjari, C. Cox, M.W. Plesniak, Formation and interaction of multiple secondary flow vortical structures in a curved pipe: transient and oscillatory flows. J. Fluid Mech. 876, 481–526 (2019)

    Article  CAS  Google Scholar 

  61. S. Oyre, E.M. Pedersen, S. Ringgaard, P. Boesiger, W.P. Paaske, In vivo wall shear stress measured by magnetic resonance velocity mapping in the normal human abdominal aorta. Eur. J. Vasc. Endovasc. Surg. 13, 263–271 (1997)

    Article  CAS  PubMed  Google Scholar 

  62. R. Pal, Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes. J. Biomech. 36, 981–989 (2003)

    Article  PubMed  Google Scholar 

  63. A. Passos, J.M. Sherwood, E. Kaliviotis, R. Agrawal, C. Pavesio, S. Balabani, The effect of deformability on the microscale flow behavior of red blood cell suspensions. Phys. Fluids 31, 1–11 (2019)

    Article  CAS  Google Scholar 

  64. T.J. Pedley, The Fluid Mechanics of Large Blood Vessels. Cambridge Monographs on Mechanics and Applied Mathematics (Cambridge University Press, New York, 1980)

    Google Scholar 

  65. R.J. Phillips, R.C. Armstrong, R.A. Brown, A.L. Graham, J.R. Abbott, A constitutive equation for concentrated suspensions that accounts for shearinduced particle migration. Phys. Fluids 4, 30–40 (1991)

    Article  Google Scholar 

  66. P.J. Carreau, D. DeKee, R.P. Chhabra, Rheology of Polymeric Systems: Principles and Applications (Hanser, Munich, 1997)

    Google Scholar 

  67. S.B. Pope, Turbulent flows (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  68. D. Quemada, Rheology of concentrated disperse systems and minimum energy dissipation principle. Rheol. Acta 16, 82–94 (1977)

    Article  Google Scholar 

  69. J.M. Ramstack, L. Zuckerman, L.F. Mockros, Activation of platelets. J. Biomech. 12, 113–125 (1979)

    Article  CAS  PubMed  Google Scholar 

  70. R. Rapadamnaba , M. Ribatet, B. Mohammadi, Global sensitivity analysis for assessing the parameters importance and setting a stopping criterion in a biomedical inverse problem. Int. J. Numer. Methods Biomed. Eng., 37 (2021)

    Google Scholar 

  71. D.A. Reasor, M. Mehrabadi, D.N. Ku, C.K. Aidun, Determination of critical parameters in platelet margination. Ann. Biomed. Eng. 41, 238–249 (2012)

    Article  PubMed  Google Scholar 

  72. M.L. Rizzini, D. Gallo, G. De Nisco, F. D’Ascenzo, C. Chiastra, P.P. Bocchino, F. Piroli, G.M. De Ferrari, U. Morbiducci, Does the inflow velocity profile influence physiologically relevant flow patterns in computational hemodynamic models of left anterior descending coronary artery? Med. Eng. Phys. 82, 58–69 (2020)

    Article  Google Scholar 

  73. A.M. Robertson, A. Sequeira, R.G. Owens, Rheological models for blood, in Cardiovascular Mathematics, ed. by L. Formaggia, A. Quarteroni, A.Veneziani (Springer, Milano, 2009)

    Google Scholar 

  74. Z.M. Ruggeri, Von willebrand factor, platelets and endothelial cell interactions. Thromb. Haemost. 1, 1335–1342 (2003)

    Article  CAS  Google Scholar 

  75. Z.M. Ruggeri, G.L. Mendolicchio, Adhesion mechanisms in platelet function. Circ. Res. 100, 1673–1685 (2007)

    Article  CAS  PubMed  Google Scholar 

  76. K.S. Sakariassen, P.A. Holme, U. Orvin, R.M. Barstad, N.O. Solum, F.R. Brosstad, Shear-induced platelet activation and platelet microparticle formation in native human blood. Thromb. Res. 92, S33–S41 (1998)

    Article  CAS  PubMed  Google Scholar 

  77. H. Schmid-Schönbein, E. Volger, H.J. Klose, Microrheology and light transmission of blood. PflĂ¼gers Arch. – Eur. J. Physiol. 333, 140–155 (1972)

    Article  Google Scholar 

  78. R. Schubert, M.J. Mulvany, The myogenic response: established facts and attractive hypotheses. Clin. Sci. 96, 313–326 (1999)

    Article  CAS  Google Scholar 

  79. G. Segrè, A. Silberberg, Behavior of macroscopic rigid spheres in Poiseuille flow. J. Fluid Mech. 14, 136–157 (1962)

    Article  Google Scholar 

  80. F.T. Smith, Fluid flow into a curved pipe. Proc. R. Soc. Lond. A 351, 71–87 (1968)

    Google Scholar 

  81. A.F. Stalder, A. Frydrychowicz, M.F. Russe, J.G. Korvink, J. Hennig, K. Li, M.Markl, Assessment of flow instabilities in the healthy aorta using flow-sensitive MRI. J. Musculoskel. Neuron. Interact. 33, 839–846 (2011)

    Google Scholar 

  82. N. Takeishi, M.E. Rosti, Y. Imai, S. Wada, L. Brandt, Haemorheology in dilute, semi-dilute and dense suspensions of red blood cells. J. Fluid Mech. 872, 818–848 (2019)

    Article  CAS  Google Scholar 

  83. R. Taniguchi, K. Hoshina, A. Hosaka, T. Miyahara, H. Okamoto, K. Shigematsu, T. Miyata, T. Watanabe, Strain analysis of wall motion in abdominal aortic aneurysms. Ann. Vasc. Dis. 7, 393–398 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  84. P.E.J. van der Meijden, J.W.M. Heemskerk, Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol. 16, 166–179 (2019). https://doi.org/10.1038/s41569-018-0110-0

    Article  PubMed  CAS  Google Scholar 

  85. S. van Wyk, L. Prahl Wittberg, K.V. Bulusu, L. Fuchs, M.W. Plesniak, Non-newtonian perspectives on pulsatile blood-analog flows in a 180-degree curved artery model. Phys. Fluids 27, 071901 (2015)

    Article  CAS  Google Scholar 

  86. S. van Wyk, L. Prahl Wittberg, L. Fuchs, Wall shear stress variations and unsteadiness of pulsatile blood-like flows in 90-degree bifurcations. Comp. Biol. Med. 43, 1025–1036 (2013)

    Article  Google Scholar 

  87. S. van Wyk, L. Prahl Wittberg, L. Fuchs, Atherosclerotic indicators for blood-like fluids in 90-degree arterial-like bifurcations. Compos. Biol. Med. 50, 56–69 (2014)

    Article  Google Scholar 

  88. S.S. Varghese, S.H. Frankel, P.F. Fischer, Direct numerical simulation of stenotic flows. Part 1. Steady flow. J. Fluid Mech. 582, 253–280 (2007)

    Google Scholar 

  89. S.S. Varghese, S.H. Frankel, P.F. Fischer, Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow. J. Fluid Mech. 582, 281–318 (2007)

    Google Scholar 

  90. C. Wagner, P. Steffen, S. Svetina, Aggregation of red blood cells: from Rouleaux to Clot formation. C. R. Phys. 14(6), 459–469 (2013)

    Article  CAS  Google Scholar 

  91. F.J. Walburn, D.J. Schneck, A constitutive equation for whole human blood. Biorheology 13, 201–210 (1976)

    Article  CAS  PubMed  Google Scholar 

  92. J.R. Womersley, Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553–563 (1955)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. P. Wu, S. GroĂŸ-Hardt, F. Boehning, P.-L. Hsu, An energy-dissipation-based power-law formulation for estimating hemolysis. Biomech. Model. Mechanobio. 19, 591–602 (2019)

    Article  Google Scholar 

  94. L.J. Wurzinger, R. Opitz, P. Blasberg, H. Schmid-Schonbein, Platelet and coagulation parameters following millisecond exposure to laminar shear stress. Thromb. Haemost. 54, 381–386 (1985)

    Article  CAS  PubMed  Google Scholar 

  95. H. Yu, S. Engel, G. Janiga, D. Thévenin, A review of hemolysis prediction models forcomputational fluid dynamics. Artif. Organs 41, 603–621 (2017)

    Article  PubMed  Google Scholar 

  96. J.-N. Zhang, A.L. Bergeron, Q. Yu, C. Sun, L. McBride, P.F. Bray, J.F. Dong, Duration of exposure to high fluid shear stress is critical in shear-induced platelet activation-aggregation. Thromb. Haemost. 90, 672–678 (2003)

    Article  CAS  PubMed  Google Scholar 

  97. A.L. Zydney, J.D. Oliver, C.K. Colton, A constitutive equation for the viscosity of stored red cell suspensions: Effect of hematocrit, shear rate, and suspending phase. J. Rheol. 35, 1639–1680 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

6.1 Electronic Supplementary Material

Chapter 6

(609 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gasser, T.C. (2021). Hemodynamics. In: Vascular Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-70966-2_6

Download citation

Publish with us

Policies and ethics