Abstract
This chapter addresses the flow of blood in conduit vessels. We review the composition of blood, a suspension of different-sized particles in plasma, and investigate the forces that act upon said particles. It results in the description of the rheological properties of blood, where single-phasic and bi-phasic models are covered. We then explore blood damage mechanisms with focus on hemolysis and abnormal thrombocyte activation. A key section of this chapter concerns the description of incompressible flows by solving the Navier-Stokes equations for a number of 1D flows. It results in the description of steady-state and steady-periodic flows through circular tubes —the Poiseuille and respective Womersley flows. The exploration of the flow in elastic tubes reveals the expression of the wave speed, an important biomechanical property linked to the condition of the vascular system. Multidimensional flow phenomena, the characteristics of boundary layer flow and the difference between laminar, transitional and turbulent flow are then specified. Wall Shear Stress-related (WSS-related) and transport-related flow parameters, values used in the quantitative description of blood flows, are then addressed. A case study uses the Finite Element Method (FEM) to predict the blood flow in the aneurysmatic aorta, and concluding remarks summarize the chapter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Erik Adolf von Willebrand, Finish internist, 1870–1949.
- 2.
Sir George Gabriel Stokes, Irish physicist and mathematician, 1819–1903.
- 3.
Robert Brown, Scottish botanist and palaeobotanist, 1773–1858.
- 4.
Robert FĂ¥hræus, Swedish clinical professor and pathologist, 1888–1968.
- 5.
Maurice Marie Alfred Couette, French physicist, 1858–1943.
- 6.
Henry Eyring, Mexican-born American theoretical chemist, 1901–1981.
- 7.
Daniel Bernoulli, Swiss mathematician and physicist, 1700–1782.
- 8.
Friedrich Wilhelm Bessel, German astronomer, mathematician, physicist, and geodesist, 1784–1846.
- 9.
John Ronald Womersley, British mathematician and computer scientist, 1907–1958.
- 10.
John Crighton Bramwell, British cardiologist, 1889–1976.
- 11.
Archibald Vivian Hill, British physiologist, 1886–1977.
- 12.
Adriaan Isebree Moens, Dutch physiologist, 1846–1891.
- 13.
Diederik Johannes Korteweg, Dutch mathematician, 1848–1941.
- 14.
Andrey Nikolaevich Kolmogorov, Russian mathematician, 1903–1987.
References
P.A. Aarts, S.A. van den Broek, G.W. Prins, G.D. Kuiken, J.J. Sixma, R.M. Heethaar, Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis 8, 819–824 (1988)
F. Ahmed, M. Mehrabadi, Z. Liu, G.A. Barabino, C.K. Aidun, Internal viscosity-dependent margination of red blood cells in microfluidic channels. J. Biomed. Eng. 140, 2605–2607 (2018)
M. Bäck, T.C. Gasser, J.-B. Michel, G. Caligiuri, Review. biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc. Res. 99, 232–241 (2013)
C.C.F.M.J. Baaten, H.T. Cate, P.E.J. van der Meijden, J.W.M. Heemskerk, Platelet populations and priming in hematological diseases. Blood Rev. 31, 389–399 (2017)
O. Baskurt, B. Neu, H. Meiselman, Red Blood Cell Aggregation (CRC Press, Boca Raton, 2011)
N. Berg, L. Fuchs, L. Prahl Wittberg, Blood flow simulations of the renal arteries—effect of segmentation and stenosis removal. Flow Turbulence Combust 102, 27–41 (2019)
J. Biasetti, F. Hussain, T.C. Gasser, Blood flow and coherent vortices in the normal and aneurysmatic aortas. A fluid dynamical approach to Intra-Luminal Thrombus formation. J. R. Soc. Interface 8, 1449–1461 (2011)
J. Biasetti, P.G. Spazzini, T.C. Gasser, An integrated fluido-chemical model towards modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms. Front. Physiol. 3, 266 (2011)
D. Bluestein, E. Rambod, M. Gharib, Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. ASME. J. Biomech. Eng. 122, 125–134 (2000)
S. Bozzi, U. Morbiducci, D. Gallo, R. Ponzini, G. Rizzo, C. Bignardi, G. Passoni, Uncertainty propagation of phase contrast-MRI derived inlet boundary conditions in computational hemodynamics models of thoracic aorta. Comput. Meth. Biomech. Biomed. Eng. 20, 1104–1111 (2017)
D.E. Brooks, J.W. Goodwin, G.V. Seaman, Interactions among erythrocytes under shear. J. Appl. Physiol. 28, 172–177 (1970)
I. Cantat, C. Misbah, Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys. Rev. Lett. 83, 880–883 (1999)
C.G. Caro, D.J. Doorly, M. Tarnawaski, K.T. Scott, Q. Long, C.L. Dumoulin, Non-planar curvature and branching of arteries and non-planar type flow. Proc. R. Soc. Lond. A 452, 185–197 (1996)
N. Casson, A Flow Equation for Pigment Oil-Suspensions of the Printing Ink Type (Pergamon Press, Oxford, 1959)
Y.S. Chatzizisis, A.U. Coskun, M. Jonas, E.R. Edelman, C.L. Feldman, P.H. Stone, Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49(25), 2379–2393 (2007)
E.M. Cherry, J.K. Eaton, Shear thinning effects on blood flow in straight and curved tubes. Phys. Fluids 25, 073104 (2013). https://doi.org/10.1063/1.4816369
S. Chien, Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168, 977–979 (1970)
C. Chnafa, Using image-based large-eddy simulations to investigate the intracardiac flow and its turbulent nature. Ph.D. thesis, Universite de Montpellier, Montpellier, France, 2014
G.R. Cokelet, J.R. Brown, S.L. Codd, J.D. Seymour, Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer. Biorheology 42, 385–399 (2005)
G. Colantuoni, J.D. Hellums, J.L. Moake, C.P. Alfrey Jr., Response of human platelets to shear stress at short exposure times. Trans. Am. Soc. Artif. Intern. Organs 23, 626–630 (1977)
W.R. Dean, Fluid motion in a curved channel. Proc. R. Soc. Lond. A 121, 402–420 (1928)
P. Di Achille, G. Tellides, C.A. Figueroa, J.D. Humphrey, A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms. Proc. R. Soc. Lond. A 470, 20140163 (2014)
J. Ding, S. Niu, Z. Chen, T. Zhang, B.P. Griffith, Z.J. Wu, Shear-induced hemolysis: species differences. Artif. Organs 30, 419–429 (2015)
D. Doorly, S. Sherwin, Geometry and flow, in Cardiovascular Mathematics, ed. by L. Formaggia, A. Quarteroni, A. Veneziani. MS&A, vol. 1 (Springer, Milan, 2009), pp. 177–209
R. FĂ¥hræus, The suspension stability of the blood. Physiol. Rev. 9, 241–274 (1929)
R. FĂ¥hræus, T. Lindqvist, The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96, 562–568 (1931)
A. Fasano, A. Sequeira, Hemomath—The Mathematics of Blood (Springer, Berlin, 2017)
D.A. Fedosov, M. Dao, G.E. Karniadakis, S. Suresh, Computational biorheology of human blood flow in health and disease. Ann. Biomed. Eng. 42, 368–387 (2013)
C.M. Fleeter, G. Geraci, D.E. Schiavazzi, A.M. Kahnd, A.L. Marsden, Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics. Comput. Methods Appl. Mech. Eng., 365 (2020)
D. Flormann, K. Schirra, T. Podgorski, C. Wagner, On the rheology of red blood cell suspensions with different amounts of dextran: separating the effect of aggregation and increase in viscosity of the suspending phase. Rheol. Acta 55, 477–483 (2016)
K.H. Fraser, T. Zhang, M.E. Taskin, B.P. Griffith, Z.J. Wu, A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: Shear stress, exposure time and hemolysis index. J. Biomed. Eng. 134, 081002 (2012)
H. Fu, Y. Jiang, D. Yang, F. Scheiflinger, W.P. Wong, T.A. Springer, Flow-induced elongation of von Willebrand factor precedes tension-dependent activation. Nat. Commun. 8, 324 (2017)
G. Fuchs, N. Berg, L.M. Broman, L. Prahl Wittberg, Modeling sensitivity and uncertainties in platelet activation models applied on centrifugal pumps for extracorporeal life support. Sci. Reports 9, 8809 (2019)
G. Fuchs, N. Berg, L. Prahl Wittberg, Pulsatile aortic blood flow—a critical assessment of boundary conditions. J. Engr. Mech. 4, 011002 (2021)
M.T. Gallagher, R.A.J. Wain, S. Dari, J.P. Whitty, D.J. Smith, Non-identifiability of parameters for a class of shear-thinning rheological models, with implications for haematological fluid dynamics. J. Biomech. 85, 230–238 (2019)
D. Gallo, G. De Santis, F. Negri, D. Tresoldi, R. Ponzini, D. Massai, M.A. Deriu, P. Segers, B .Verhegghe, G. Rizzo, U. Morbiducci, On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow. Ann. Biomed. Eng. 40, 729–741 (2012)
A.A. Gavrilov, K.A. Finnikov, Y.S.Ignatenko, O.B. Bocharov, R. May, Drag and lift forces acting on a sphere in shear flow of power-law fluid. Fluid. J. Engin. Thermophys. 27, 474–488 (2018)
M. Giersiepen, L.J. Wurzinger, R. Opitz, H. Reul, Estimation of shear stress-related blood damage in heart valve prosthesis. In vitro comparison of 25 aortic valves. Int. J. Artificial Organs 13, 300–306 (1990)
H.L Goldsmith, J.C Marlow, Flow behavior of erythrocytes. II. particle motions in concentrated suspensions of ghost cells. J. Colloid Interface Sci. 71, 383–407 (1979)
P. Gondret, L. Petit, Dynamic viscosity of macroscopic suspensions of bimodal sized solid spheres. J. Rheol. 41, 1261–1274 (1997)
L. Goubergrits, K. Affeld, Numerical estimation of blooddamage in artificial organs. Artif. Organs 28, 499–507 (2004)
L. Gustafsson, L. Appelgren, H.E. Myrvold, Effects of increased plasma viscosity and red blood cell aggregation on blood viscosity in vivo. Am. J. Physiol. 241, H513–18 (1981)
J.D. Hellums, 1993 Whitaker lecture: Biorheology in thrombosis research. Ann. Biomed. Eng. 22, 445–455 (1994)
G. Heuser, R.A. Opitz, A Couette viscometer for short timeshearing of blood. Biorheology 17, 17–24 (1980)
B.P. Ho, L.G. Leal, Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65, 365–400 (1974)
D.R. Hose, P.V. Lawford, W. Huberts, L.R. Hellevik, S.W. Omholt, F.N. van de Vosse, Cardiovascular models for personalised medicine: where now and where next? Med. Eng. Phys. 72, 38–48 (2019)
S.J. Hund, M.V. Kameneva, J.F. Antaki, A quasi-mechanistic mathematical representation for blood viscosity. Fluids 2(1), 10 (2017)
F. Hussain, Coherent structures and turbulence. J. Fluid Mech. 173, 303–356 (1986)
J. Jeong, F. Hussain, On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)
A. Kheradvar, C. Rickers, D. Morisawa, M. Kim, G.-R. Hong, G. Pedrizzetti, Diagnostic and prognostic significance of cardiovascular vortex formation. J. Cardiol. 74, 403–411 (2019)
P.J. Kilner, G.Z. Yang, R.H. Mohiaddin, D.N. Firmin, D.B. Longmore, Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88, 2235–2247 (1993)
A. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Doklady Akademiia Nauk SSSR 30, 301–305 (1941)
I.M. Krieger, T.J. Dougherty, A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheo. 3, 137–152 (1959)
P.K. Kundu, I.M. Cohen, Fluid mechanics, 4th edn. (Academic Press, London, 2008)
D. Lacasse, A. Garon, D. Pelletier, Mechanical hemolysis in blood flow: user-independent predictions with the solution of a partial differential equation. Comput. Meth. Biomech. Biomed. Eng. 10, 1–12 (2007)
A.S. Les, J.J. Yeung, G.M. Schultz, R.J. Herfkens, R.L. Dalman, C.A. Taylor, Supraceliac and infrarenal aortic flow in patients with abdominal aortic aneurysms: mean flows, waveforms, and allometric scaling relationships. Cardiovasc. Eng. Technol. (2010). https://doi.org/10.1007/s13239-010-0004-8
W. Lyne, Unsteady viscous flow in a curved pipe. J. Fluid Mech. 45, 13–31 (1971)
D.A. McDonald, Blood Flow in Arteries, 6th edn. (Edward Arnold, London, 2011)
A.I. Moens, Die Pulskurve (E.J. Brill, Leiden, 1878)
M.R. Najjari, C. Cox, M.W. Plesniak, Formation and interaction of multiple secondary flow vortical structures in a curved pipe: transient and oscillatory flows. J. Fluid Mech. 876, 481–526 (2019)
S. Oyre, E.M. Pedersen, S. Ringgaard, P. Boesiger, W.P. Paaske, In vivo wall shear stress measured by magnetic resonance velocity mapping in the normal human abdominal aorta. Eur. J. Vasc. Endovasc. Surg. 13, 263–271 (1997)
R. Pal, Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes. J. Biomech. 36, 981–989 (2003)
A. Passos, J.M. Sherwood, E. Kaliviotis, R. Agrawal, C. Pavesio, S. Balabani, The effect of deformability on the microscale flow behavior of red blood cell suspensions. Phys. Fluids 31, 1–11 (2019)
T.J. Pedley, The Fluid Mechanics of Large Blood Vessels. Cambridge Monographs on Mechanics and Applied Mathematics (Cambridge University Press, New York, 1980)
R.J. Phillips, R.C. Armstrong, R.A. Brown, A.L. Graham, J.R. Abbott, A constitutive equation for concentrated suspensions that accounts for shearinduced particle migration. Phys. Fluids 4, 30–40 (1991)
P.J. Carreau, D. DeKee, R.P. Chhabra, Rheology of Polymeric Systems: Principles and Applications (Hanser, Munich, 1997)
S.B. Pope, Turbulent flows (Cambridge University Press, Cambridge, 2012)
D. Quemada, Rheology of concentrated disperse systems and minimum energy dissipation principle. Rheol. Acta 16, 82–94 (1977)
J.M. Ramstack, L. Zuckerman, L.F. Mockros, Activation of platelets. J. Biomech. 12, 113–125 (1979)
R. Rapadamnaba , M. Ribatet, B. Mohammadi, Global sensitivity analysis for assessing the parameters importance and setting a stopping criterion in a biomedical inverse problem. Int. J. Numer. Methods Biomed. Eng., 37 (2021)
D.A. Reasor, M. Mehrabadi, D.N. Ku, C.K. Aidun, Determination of critical parameters in platelet margination. Ann. Biomed. Eng. 41, 238–249 (2012)
M.L. Rizzini, D. Gallo, G. De Nisco, F. D’Ascenzo, C. Chiastra, P.P. Bocchino, F. Piroli, G.M. De Ferrari, U. Morbiducci, Does the inflow velocity profile influence physiologically relevant flow patterns in computational hemodynamic models of left anterior descending coronary artery? Med. Eng. Phys. 82, 58–69 (2020)
A.M. Robertson, A. Sequeira, R.G. Owens, Rheological models for blood, in Cardiovascular Mathematics, ed. by L. Formaggia, A. Quarteroni, A.Veneziani (Springer, Milano, 2009)
Z.M. Ruggeri, Von willebrand factor, platelets and endothelial cell interactions. Thromb. Haemost. 1, 1335–1342 (2003)
Z.M. Ruggeri, G.L. Mendolicchio, Adhesion mechanisms in platelet function. Circ. Res. 100, 1673–1685 (2007)
K.S. Sakariassen, P.A. Holme, U. Orvin, R.M. Barstad, N.O. Solum, F.R. Brosstad, Shear-induced platelet activation and platelet microparticle formation in native human blood. Thromb. Res. 92, S33–S41 (1998)
H. Schmid-Schönbein, E. Volger, H.J. Klose, Microrheology and light transmission of blood. PflĂ¼gers Arch. – Eur. J. Physiol. 333, 140–155 (1972)
R. Schubert, M.J. Mulvany, The myogenic response: established facts and attractive hypotheses. Clin. Sci. 96, 313–326 (1999)
G. Segrè, A. Silberberg, Behavior of macroscopic rigid spheres in Poiseuille flow. J. Fluid Mech. 14, 136–157 (1962)
F.T. Smith, Fluid flow into a curved pipe. Proc. R. Soc. Lond. A 351, 71–87 (1968)
A.F. Stalder, A. Frydrychowicz, M.F. Russe, J.G. Korvink, J. Hennig, K. Li, M.Markl, Assessment of flow instabilities in the healthy aorta using flow-sensitive MRI. J. Musculoskel. Neuron. Interact. 33, 839–846 (2011)
N. Takeishi, M.E. Rosti, Y. Imai, S. Wada, L. Brandt, Haemorheology in dilute, semi-dilute and dense suspensions of red blood cells. J. Fluid Mech. 872, 818–848 (2019)
R. Taniguchi, K. Hoshina, A. Hosaka, T. Miyahara, H. Okamoto, K. Shigematsu, T. Miyata, T. Watanabe, Strain analysis of wall motion in abdominal aortic aneurysms. Ann. Vasc. Dis. 7, 393–398 (2014)
P.E.J. van der Meijden, J.W.M. Heemskerk, Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol. 16, 166–179 (2019). https://doi.org/10.1038/s41569-018-0110-0
S. van Wyk, L. Prahl Wittberg, K.V. Bulusu, L. Fuchs, M.W. Plesniak, Non-newtonian perspectives on pulsatile blood-analog flows in a 180-degree curved artery model. Phys. Fluids 27, 071901 (2015)
S. van Wyk, L. Prahl Wittberg, L. Fuchs, Wall shear stress variations and unsteadiness of pulsatile blood-like flows in 90-degree bifurcations. Comp. Biol. Med. 43, 1025–1036 (2013)
S. van Wyk, L. Prahl Wittberg, L. Fuchs, Atherosclerotic indicators for blood-like fluids in 90-degree arterial-like bifurcations. Compos. Biol. Med. 50, 56–69 (2014)
S.S. Varghese, S.H. Frankel, P.F. Fischer, Direct numerical simulation of stenotic flows. Part 1. Steady flow. J. Fluid Mech. 582, 253–280 (2007)
S.S. Varghese, S.H. Frankel, P.F. Fischer, Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow. J. Fluid Mech. 582, 281–318 (2007)
C. Wagner, P. Steffen, S. Svetina, Aggregation of red blood cells: from Rouleaux to Clot formation. C. R. Phys. 14(6), 459–469 (2013)
F.J. Walburn, D.J. Schneck, A constitutive equation for whole human blood. Biorheology 13, 201–210 (1976)
J.R. Womersley, Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553–563 (1955)
P. Wu, S. GroĂŸ-Hardt, F. Boehning, P.-L. Hsu, An energy-dissipation-based power-law formulation for estimating hemolysis. Biomech. Model. Mechanobio. 19, 591–602 (2019)
L.J. Wurzinger, R. Opitz, P. Blasberg, H. Schmid-Schonbein, Platelet and coagulation parameters following millisecond exposure to laminar shear stress. Thromb. Haemost. 54, 381–386 (1985)
H. Yu, S. Engel, G. Janiga, D. Thévenin, A review of hemolysis prediction models forcomputational fluid dynamics. Artif. Organs 41, 603–621 (2017)
J.-N. Zhang, A.L. Bergeron, Q. Yu, C. Sun, L. McBride, P.F. Bray, J.F. Dong, Duration of exposure to high fluid shear stress is critical in shear-induced platelet activation-aggregation. Thromb. Haemost. 90, 672–678 (2003)
A.L. Zydney, J.D. Oliver, C.K. Colton, A constitutive equation for the viscosity of stored red cell suspensions: Effect of hematocrit, shear rate, and suspending phase. J. Rheol. 35, 1639–1680 (1991)
Author information
Authors and Affiliations
6.1 Electronic Supplementary Material
Chapter 6
(609 KB)
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Gasser, T.C. (2021). Hemodynamics. In: Vascular Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-70966-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-70966-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-70965-5
Online ISBN: 978-3-030-70966-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)