Skip to main content

Male Contraception: Hormonal Methods

  • Chapter
  • First Online:
Female and Male Contraception

Abstract

There is an unmet need for male contraception. A greater array of male contraceptive of convenient, reversible methods are needed to meet this need. Development of novel, male-based methods has made slow progress, but efficacy trials have proven that male hormonal contraceptive methods are effective, reversible, and acceptable to men and their female partners. The adverse effects of experimental male hormonal contraceptive regimens include increased weight, suppression of serum high-density cholesterol, and possible mood disturbances. Androgen-progestin or single agents with androgenic and progestogenic properties show the most promise. In multiple efficacy trials, male hormonal contraceptive regimens have demonstrated efficacy that is significantly superior to condoms and comparable to many female hormonal methods. Larger, longer-term studies are needed to assess real-world effectiveness and safety. Introduction of novel male hormonal contraceptives might decrease unintended pregnancies, increase reproductive justice, provide men with greater agency in their reproductive futures, and result in improved overall health for both men and women.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

11-βMNT:

11β-methyl-19-nortestosterone17β

11-βMNTDC:

11β-methyl-19-nortestosterone17β-dodecylcarbonate

DHT:

Dihydrotestosterone

DMPA:

Depot medroxyprogesterone acetate

FSH:

follicle-stimulating hormone

GnRH:

gonadotropin-releasing hormone

IM:

intramuscular

LH:

luteinizing hormone

MENT:

7α-methyl-19-nortestosterone

MHC:

male hormonal contraception

T:

testosterone

TE:

testosterone enanthate

TU:

testosterone undecanoate

WHO:

World Health Organization

References

  1. Ross J, Hardee K. Use of male methods of contraception worldwide. J Biosoc Sci. 2017;49(5):648–63.

    Article  PubMed  Google Scholar 

  2. Grady WR, et al. Men's perceptions of their roles and responsibilities regarding sex, contraception and childrearing. Fam Plann Perspect. 1996;28(5):221–6.

    Article  CAS  PubMed  Google Scholar 

  3. Shah I, Ahman E. Unsafe abortion in 2008: global and regional levels and trends. Reprod Health Matters. 2010;18(36):90–101.

    Article  PubMed  Google Scholar 

  4. Higgins JA, Hirsch JS, Trussell J. Pleasure, prophylaxis and procreation: a qualitative analysis of intermittent contraceptive use and unintended pregnancy. Perspect Sex Reprod Health. 2008;40(3):130–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sundaram A, et al. Contraceptive failure in the United States: estimates from the 2006–2010 National Survey of Family Growth. Perspect Sex Reprod Health. 2017;49(1):7–16.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shih G, Turok DK, Parker WJ. Vasectomy: the other (better) form of sterilization. Contraception. 2011;83(4):310–5.

    Article  PubMed  Google Scholar 

  7. Kost K, et al. Estimates of contraceptive failure from the 2002 National Survey of Family Growth. Contraception. 2008;77(1):10–21.

    Article  PubMed  Google Scholar 

  8. Heckel NJ. Production of oligospermia in a man by the use of testosterone propionate. Proc Soc Exp Biol Med. 1939;40(4)

    Google Scholar 

  9. World Health Organization Task Force on Methods for the Regulation of Male F. Contraceptive efficacy of testosterone-induced azoospermia and oligozoospermia in normal men. Fertil Steril. 1996;65(4):821–9.

    Article  Google Scholar 

  10. Turner L, et al. Contraceptive efficacy of a depot progestin and androgen combination in men. J Clin Endocrinol Metab. 2003;88(10):4659–67.

    Article  CAS  PubMed  Google Scholar 

  11. Gu YQ, et al. A multicenter contraceptive efficacy study of injectable testosterone undecanoate in healthy Chinese men. J Clin Endocrinol Metab. 2003;88(2):562–8.

    Article  CAS  PubMed  Google Scholar 

  12. Gu Y, et al. Multicenter contraceptive efficacy trial of injectable testosterone undecanoate in Chinese men. J Clin Endocrinol Metab. 2009;94(6):1910–5.

    Article  CAS  PubMed  Google Scholar 

  13. Fertility, W.H.O.T.F.o.M.f.t.R.o.M. Contraceptive efficacy of testosterone-induced azoospermia in normal men. World Health Organization Task Force on methods for the regulation of male fertility. Lancet. 1990;336(8721):955–9.

    Article  Google Scholar 

  14. Behre HM, et al. Efficacy and safety of an injectable combination hormonal contraceptive for men. J Clin Endocrinol Metab. 2016;101(12):4779–88.

    Article  CAS  PubMed  Google Scholar 

  15. Liu PY, et al. Determinants of the rate and extent of spermatogenic suppression during hormonal male contraception: an integrated analysis. J Clin Endocrinol Metab. 2008;93(5):1774–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu PY, et al. Rate, extent, and modifiers of spermatogenic recovery after hormonal male contraception: an integrated analysis. Lancet. 2006;367(9520):1412–20.

    Article  CAS  PubMed  Google Scholar 

  17. Meriggiola MC, et al. An oral regimen of cyproterone acetate and testosterone undecanoate for spermatogenic suppression in men. Fertil Steril. 1997;68(5):844–50.

    Article  CAS  PubMed  Google Scholar 

  18. Surampudi P, et al. Single, escalating dose pharmacokinetics, safety and food effects of a new oral androgen dimethandrolone undecanoate in man: a prototype oral male hormonal contraceptive. Andrology. 2014;2(4):579–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Attardi BJ, Hild SA, Reel JR. Dimethandrolone undecanoate: a new potent orally active androgen with progestational activity. Endocrinology. 2006;147(6):3016–26.

    Article  CAS  PubMed  Google Scholar 

  20. Ayoub R, et al. Comparison of the single dose pharmacokinetics, pharmacodynamics, and safety of two novel oral formulations of dimethandrolone undecanoate (DMAU): a potential oral, male contraceptive. Andrology. 2017;5(2):278–85.

    Article  CAS  PubMed  Google Scholar 

  21. Thirumalai A, et al. Effects of 28 days of oral dimethandrolone undecanoate in healthy men: a prototype male pill. J Clin Endocrinol Metab. 2018;104(2):423–32.

    Article  PubMed Central  Google Scholar 

  22. Attardi BJ, et al. The potent synthetic androgens, dimethandrolone (7alpha,11beta-dimethyl-19-nortestosterone) and 11beta-methyl-19-nortestosterone, do not require 5alpha-reduction to exert their maximal androgenic effects. J Steroid Biochem Mol Biol. 2010;122(4):212–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Attardi BJ, et al. Dimethandrolone (7alpha,11beta-dimethyl-19-nortestosterone) and 11beta-methyl-19-nortestosterone are not converted to aromatic A-ring products in the presence of recombinant human aromatase. J Steroid Biochem Mol Biol. 2008;110(3–5):214–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Attardi BJ, et al. Long-term effects of dimethandrolone 17beta-undecanoate and 11beta-methyl-19-nortestosterone 17beta-dodecylcarbonate on body composition, bone mineral density, serum gonadotropins, and androgenic/anabolic activity in castrated male rats. J Androl. 2011;32(2):183–92.

    Article  CAS  PubMed  Google Scholar 

  25. Wu S, et al. Safety and pharmacokinetics of single-dose novel oral androgen 11β-methyl-19-nortestosterone-17β-dodecylcarbonate in men. J Clin Endocrinol Metab. 2018;104(3):629–38.

    Article  PubMed Central  Google Scholar 

  26. Soufir JC, Meduri G, Ziyyat A. Spermatogenetic inhibition in men taking a combination of oral medroxyprogesterone acetate and percutaneous testosterone as a male contraceptive method. Hum Reprod. 2011;26(7):1708–14.

    Article  CAS  PubMed  Google Scholar 

  27. Sitruk-Ware R, Nath A. The use of newer progestins for contraception. Contraception. 2010;82(5):410–7.

    Article  CAS  PubMed  Google Scholar 

  28. Ilani N, et al. A new combination of testosterone and nestorone transdermal gels for male hormonal contraception. J Clin Endocrinol Metab. 2012;97(10):3476–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anawalt BD, et al. Combined nestorone-testosterone gel suppresses serum gonadotropins to concentrations associated with effective hormonal contraception in men. Andrology. 2019;

    Google Scholar 

  30. Mahabadi V, et al. Combined transdermal testosterone gel and the progestin nestorone suppresses serum gonadotropins in men. J Clin Endocrinol Metab. 2009;94(7):2313–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herbst KL, et al. A single dose of the potent gonadotropin-releasing hormone antagonist acyline suppresses gonadotropins and testosterone for 2 weeks in healthy young men. J Clin Endocrinol Metab. 2004;89(12):5959–65.

    Article  CAS  PubMed  Google Scholar 

  32. Page ST, et al. Testosterone gel combined with depomedroxyprogesterone acetate is an effective male hormonal contraceptive regimen and is not enhanced by the addition of a GnRH antagonist. J Clin Endocrinol Metab. 2006;91(11):4374–80.

    Article  CAS  PubMed  Google Scholar 

  33. Behre HM, et al. Suppression of spermatogenesis to azoospermia by combined administration of GnRH antagonist and 19-nortestosterone cannot be maintained by this non-aromatizable androgen alone. Hum Reprod. 2001;16(12):2570–7.

    Article  CAS  PubMed  Google Scholar 

  34. Kumar N, et al. The biological activity of 7 alpha-methyl-19-nortestosterone is not amplified in male reproductive tract as is that of testosterone. Endocrinology. 1992;130(6):3677–83.

    Article  CAS  PubMed  Google Scholar 

  35. Cummings DE, et al. Prostate-sparing effects in primates of the potent androgen 7alpha-methyl-19-nortestosterone: a potential alternative to testosterone for androgen replacement and male contraception. J Clin Endocrinol Metab. 1998;83(12):4212–9.

    CAS  PubMed  Google Scholar 

  36. Chao J, Page ST, Anderson RA. Male contraception. Best Pract Res Clin Obstet Gynaecol. 2014;28(6):845–57.

    Article  PubMed  PubMed Central  Google Scholar 

  37. von Eckardstein S, et al. A clinical trial of 7α-methyl-19-nortestosterone implants for possible use as a long-acting contraceptive for men. J Clin Endocrinol Metab. 2003;88(11):5232–9.

    Article  CAS  Google Scholar 

  38. Anderson RA, et al. Evidence for tissue selectivity of the synthetic androgen 7α-methyl-19-nortestosterone in hypogonadal men. J Clin Endocrinol Metab. 2003;88(6):2784–93.

    Article  CAS  PubMed  Google Scholar 

  39. Nieschlag E, Kumar N, Sitruk-Ware R. 7alpha-methyl-19-nortestosterone (MENTR): the population council's contribution to research on male contraception and treatment of hypogonadism. Contraception. 2013;87(3):288–95.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang FP, et al. The low gonadotropin-independent constitutive production of testicular testosterone is sufficient to maintain spermatogenesis. Proc Natl Acad Sci U S A. 2003;100(23):13692–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roth MY, et al. Serum LH correlates highly with intratesticular steroid levels in normal men. J Androl. 2010;31(2):138–45.

    Article  CAS  PubMed  Google Scholar 

  42. Page ST, et al. Intratesticular androgens and spermatogenesis during severe gonadotropin suppression induced by male hormonal contraceptive treatment. J Androl. 2007;28(5):734–41.

    Article  CAS  PubMed  Google Scholar 

  43. Coviello AD, et al. Intratesticular testosterone concentrations comparable with serum levels are not sufficient to maintain normal sperm production in men receiving a hormonal contraceptive regimen. J Androl. 2004;25(6):931–8.

    Article  CAS  PubMed  Google Scholar 

  44. Roth MY, et al. Androgen synthesis in the gonadotropin-suppressed human testes can be markedly suppressed by ketoconazole. J Clin Endocrinol Metab. 2013;98(3):1198–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stein MN, et al. Androgen synthesis inhibitors in the treatment of castration-resistant prostate cancer. Asian J Androl. 2014;16(3):387–400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Roth MY, et al. Dose-dependent increase in intratesticular testosterone by very low-dose human chorionic gonadotropin in normal men with experimental gonadotropin deficiency. J Clin Endocrinol Metab. 2010;95(8):3806–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McLachlan RI, et al. Relationship between serum gonadotropins and spermatogenic suppression in men undergoing steroidal contraceptive treatment. J Clin Endocrinol Metab. 2004;89(1):142–9.

    Article  CAS  PubMed  Google Scholar 

  48. Anderson RA, Wallace AM, Wu FC. Comparison between testosterone enanthate-induced azoospermia and oligozoospermia in a male contraceptive study. III. Higher 5 alpha-reductase activity in oligozoospermic men administered supraphysiological doses of testosterone. J Clin Endocrinol Metab. 1996;81(3):902–8.

    CAS  PubMed  Google Scholar 

  49. McLachlan RI, et al. Effects of testosterone plus medroxyprogesterone acetate on semen quality, reproductive hormones, and germ cell populations in normal young men. J Clin Endocrinol Metab. 2002;87(2):546–56.

    Article  CAS  PubMed  Google Scholar 

  50. McLachlan RI, et al. Efficacy and acceptability of testosterone implants, alone or in combination with a 5alpha-reductase inhibitor, for male hormonal contraception. Contraception. 2000;62(2):73–8.

    Article  CAS  PubMed  Google Scholar 

  51. Marz W, et al. HDL cholesterol: reappraisal of its clinical relevance. Clin Res Cardiol. 2017;106(9):663–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Surampudi P, Swerdloff RS, Wang C. An update on male hypogonadism therapy. Expert Opin Pharmacother. 2014;15(9):1247–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fernandez-Balsells MM, et al. Clinical review 1: adverse effects of testosterone therapy in adult men: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2010;95(6):2560–75.

    Article  CAS  PubMed  Google Scholar 

  54. Anawalt BD, et al. Intramuscular testosterone enanthate plus very low dosage oral levonorgestrel suppresses spermatogenesis without causing weight gain in normal young men: a randomized clinical trial. J Androl. 2005;26(3):405–13.

    Article  CAS  PubMed  Google Scholar 

  55. Herbst KL, et al. The male contraceptive regimen of testosterone and levonorgestrel significantly increases lean mass in healthy young men in 4 weeks, but attenuates a decrease in fat mass induced by testosterone alone. J Clin Endocrinol Metab. 2003;88(3):1167–73.

    Article  CAS  PubMed  Google Scholar 

  56. Layton JB, et al. Comparative safety of testosterone dosage forms. JAMA Intern Med. 2015;175(7):1187–96.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mommers E, et al. Male hormonal contraception: a double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2008;93(7):2572–80.

    Article  CAS  PubMed  Google Scholar 

  58. Bebb RA, et al. Combined administration of levonorgestrel and testosterone induces more rapid and effective suppression of spermatogenesis than testosterone alone: a promising male contraceptive approach. J Clin Endocrinol Metab. 1996;81(2):757–62.

    CAS  PubMed  Google Scholar 

  59. Gui YL, et al. Male hormonal contraception: suppression of spermatogenesis by injectable testosterone undecanoate alone or with levonorgestrel implants in Chinese men. J Androl. 2004;25(5):720–7.

    Article  CAS  PubMed  Google Scholar 

  60. Anderson RA, et al. Investigation of hormonal male contraception in African men: suppression of spermatogenesis by oral desogestrel with depot testosterone. Hum Reprod. 2002;17(11):2869–77.

    Article  CAS  PubMed  Google Scholar 

  61. Zitzmann M, et al. Impact of various progestins with or without transdermal testosterone on gonadotropin levels for non-invasive hormonal male contraception: a randomized clinical trial. Andrology. 2017;5(3):516–26.

    Article  CAS  PubMed  Google Scholar 

  62. Weston GC, et al. Will Australian men use male hormonal contraception? A survey of a postpartum population. Med J Aust. 2002;176(5):208–10.

    Article  PubMed  Google Scholar 

  63. Martin CW, et al. Potential impact of hormonal male contraception: cross-cultural implications for development of novel preparations. Hum Reprod. 2000;15(3):637–45.

    Article  CAS  PubMed  Google Scholar 

  64. Heinemann K, et al. Attitudes toward male fertility control: results of a multinational survey on four continents. Hum Reprod. 2005;20(2):549–56.

    Article  PubMed  Google Scholar 

  65. Glasier AF, et al. Would women trust their partners to use a male pill? Hum Reprod. 2000;15(3):646–9.

    Article  CAS  PubMed  Google Scholar 

  66. Anderson RA, Baird DT. Progress towards a male pill. IPPF Med Bull. 1997;31(6):1–5.

    CAS  PubMed  Google Scholar 

  67. Roth MY, et al. Acceptability of a transdermal gel-based male hormonal contraceptive in a randomized controlled trial. Contraception. 2014;90(4):407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ringheim K. Evidence for the acceptability of an injectable hormonal method for men. Fam Plan Perspect. 1995;27(3):123–8.

    Article  CAS  Google Scholar 

  69. Meriggiola MC, et al. Acceptability of an injectable male contraceptive regimen of norethisterone enanthate and testosterone undecanoate for men. Hum Reprod. 2006;21(8):2033–40.

    Article  CAS  PubMed  Google Scholar 

  70. Amory JK, et al. Acceptability of a combination testosterone gel and depomedroxyprogesterone acetate male contraceptive regimen. Contraception. 2007;75(3):218–23.

    Article  CAS  PubMed  Google Scholar 

  71. Wu S, et al. Safety and pharmacokinetics of single-dose novel oral androgen 11beta-Methyl-19-nortestosterone-17beta-dodecylcarbonate in men. J Clin Endocrinol Metab. 2019;104(3):629–38.

    Article  PubMed  Google Scholar 

  72. Gonzalo IT, et al. Levonorgestrel implants (Norplant II) for male contraception clinical trials: combination with transdermal and injectable testosterone. J Clin Endocrinol Metab. 2002;87(8):3562–72.

    Article  CAS  PubMed  Google Scholar 

  73. Buchter D, et al. Clinical trial of transdermal testosterone and oral levonorgestrel for male contraception. J Clin Endocrinol Metab. 1999;84(4):1244–9.

    CAS  PubMed  Google Scholar 

  74. Peterson LM, Campbell MAT, Laky ZE. The next Frontier for men’s contraceptive choice: college men’s willingness to pursue male hormonal contraception. Psychol Men Masculinity. 2018;

    Google Scholar 

  75. Dorman E, et al. Modeling the impact of novel male contraceptive methods on reductions in unintended pregnancies in Nigeria, South Africa, and the United States. Contraception. 2018;97(1):62–9.

    Article  PubMed  Google Scholar 

  76. Heinemann K, et al. Expectations toward a novel male fertility control method and potential user types: results of a multinational survey. J Androl. 2005;26(2):155–62.

    Article  PubMed  Google Scholar 

  77. Chabot MJ, et al. Correlates of receiving reproductive health care services among U.S. men aged 15–44 years. Am J Mens Health. 2011;5(4):358–66.

    Article  PubMed  Google Scholar 

  78. Liddon N, Steiner RJ, Martinez GM. Provider communication with adolescent and young females during sexual and reproductive health visits: findings from the 2011–2015 National Survey of Family Growth. Contraception. 2018;97(1):22–8.

    Article  PubMed  Google Scholar 

  79. Same RV, et al. Sexual and reproductive health care: adolescent and adult men's willingness to talk and preferred approach. Am J Prev Med. 2014;47(2):175–81.

    Article  PubMed  Google Scholar 

  80. Anderson DJ. Population and the environment—time for another contraception revolution. N Engl J Med. 2019;381(5):397–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie T. Page .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abbe, C., Anawalt, B.D., Page, S.T. (2021). Male Contraception: Hormonal Methods. In: Meriggiola, M.C., Gemzell-Danielsson, K. (eds) Female and Male Contraception. Trends in Andrology and Sexual Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-70932-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70932-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70931-0

  • Online ISBN: 978-3-030-70932-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics