Skip to main content

Optinformatics Within a Single Problem Domain

  • Chapter
  • First Online:
Optinformatics in Evolutionary Learning and Optimization

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 25))

  • 204 Accesses

Abstract

This chapter introduces specific algorithm designs of optinformatics in evolutionary learning and optimization within a single problem domain. In particular, the first algorithm considers the knowledge learning and reuse in the form of local search which is integrated in a global search, such as genetic algorithm, with the aim of improving the search efficiency and effectiveness of global optimization. The well-known feature selection is used as the practical problem to evaluate the performance of the built optinformatics method. Further, towards general knowledge learning and transfer in evolutionary search, a paradigm that integrates evolutionary search with transfer learning is presented. Taking vehicle routing and arc routing problem as the case study, knowledge is defined beyond the form of local search. Based on the knowledge definition, the learning, selection, variation, and imitation of knowledge in evolutionary search for routing are discussed. To validate the performance of the optinformatic algorithm, comprehensive empirical studies on commonly used vehicle routing and arc routing problems are conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A meme is defined as the basic unit of cultural transmission in [63] stored in brains. In the context of computational intelligence, memes are defined as recurring real-world patterns or knowledge encoded in computational representations for the purpose of effective problem-solving [64].

  2. 2.

    If a database of knowledge memes that are learned from relevant past problem solving experiences in the same domain is available, it can be loaded and leveraged upon.

  3. 3.

    Note that as the learning operation is conducted offline, it does not incur additional cost to the evolutionary optimization of \(\mathbf {p}^j_{new}\).

  4. 4.

    Dependency is a measure of the correlation of two data sets [68]. Here the interest on knowledge meme \(\mathbf {M}\) in the form of a maximization of the statistical dependency thus ensure maximal alignment between the transformed tasks distribution and the tasks distribution of the optimized solution.

  5. 5.

    From the experimental study, the problems in the benchmark set are mostly verified to be positively correlated.

  6. 6.

    Maximum mean discrepancy measures the distribution differences between two data sets, which can come in the form of vectors, sequences, graphs, and other common structured data types.

References

  1. B. Liu, L. Wang, Y.-H. Jin, An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Tran. Syst. Man Cybern. Part B (Cybernetics) 37(1), 18–27 (2007)

    Google Scholar 

  2. S.K. Hasan, R. Sarker, D. Essam, D. Cornforth, Memetic algorithms for solving job-shop scheduling problems. Memetic Comput. 1(1), 69–83 (2009)

    Article  Google Scholar 

  3. K. Tang, Y. Mei, X. Yao, Memetic algorithm with extended neighborhood search for capacitated arc routing problems. IEEE Trans. Evol. Comput. 13(5), 1151–1166 (2009)

    Article  Google Scholar 

  4. M. Tang, X. Yao, A memetic algorithm for vlsi floorplanning. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 37(1), 62–69 (2007)

    Google Scholar 

  5. H. Soh, Y.S. Ong, Q.C. Nguyen, Q.H. Nguyen, M.S. Habibullah, T. Hung, J.-L. Kuo, Discovering unique, low-energy pure water isomers: memetic exploration, optimization, and landscape analysis. IEEE Trans. Evol. Comput. 14(3), 419–437 (2010)

    Article  Google Scholar 

  6. C. Aranha, H. Iba, The memetic tree-based genetic algorithm and its application to portfolio optimization. Memetic Comput. 1(2), 139–151 (2009)

    Article  Google Scholar 

  7. P. Moscato, Memetic algorithm: a short introduction, in New Ideas in Optimization (McGraw-Hill, London, 1999), pp. 219–234

    Google Scholar 

  8. Q.H. Nguyen, Y.S. Ong, M.H. Lim, A probabilistic memetic framework. IEEE Trans. Evol. Comput. 13(3), 604–623 (2009)

    Article  Google Scholar 

  9. Y.-S. Ong, M.-H. Lim, N. Zhu, K.-W. Wong, Classification of adaptive memetic algorithms: a comparative study. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 36(1), 141–152 (2006)

    Google Scholar 

  10. H. Ishibuchi, T. Yoshida, T. Murata, Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans. Evol. Comput. 7(2), 204–223 (2003)

    Article  Google Scholar 

  11. P. Merz, On the performance of memetic algorithms in combinatorial optimization, in Proceedings of 2001 Genetic and Evolutionary Computation Conference. Citeseer (2001)

    Google Scholar 

  12. Z. Zhu, Y.S. Ong, M. Dash, Wrapper–filter feature selection algorithm using a memetic framework. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 37(1), 70–76 (2007)

    Google Scholar 

  13. Z. Zhu, Y.S. Ong, M. Dash, Markov blanket-embedded genetic algorithm for gene selection. Pattern Recogn. 40(11), 3236–3248 (2007)

    Article  MATH  Google Scholar 

  14. N. Krasnogor, Studies on the Theory and Design Space of Memetic Algorithms. Ph.D. dissertation, University of the West of England (2002)

    Google Scholar 

  15. I.S. Oh, J.S. Lee, B.R. Moon, Hybrid genetic algorithms for feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1424–1437 (2004)

    Article  Google Scholar 

  16. C. Guerra-Salcedo, S. Chen, D. Whitley, S. Smith, Fast and accurate feature selection using hybrid genetic strategies, in Proceedings of the 1999 Congress on Evolutionary Computation, vol. 1, pp. 177–184. IEEE (1999)

    Google Scholar 

  17. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (MIT Press, 1992)

    Google Scholar 

  18. L. Yu, H. Liu, Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5(Oct), 1205–1224 (2004)

    Google Scholar 

  19. H. Liu, L. Yu, Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 17(4), 491–502 (2005)

    Article  MathSciNet  Google Scholar 

  20. M. Dash, H. Liu, Feature selection for classification. Intell. Data Anal. Int. J. 1(3), 131–156 (1997)

    Article  Google Scholar 

  21. R. Kohavi, G.H. John et al., Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)

    Article  MATH  Google Scholar 

  22. I. Guyon, A. Elisseeff, An introduction to variable and feature selection. J. Mach. Learn. Res. 3(Mar), 1157–1182 (2003)

    Google Scholar 

  23. E. Amaldi, V. Kann et al., On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoret. Comput. Sci. 209(1), 237–260 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Almuallim, T.G. Dietterich, Learning Boolean concepts in the presence of many irrelevant features. Artif. Intell. 69(1–2), 279–305 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Narendra, K. Fukunaga, A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 26(9), 912–922 (1977)

    Google Scholar 

  26. M. A. Hall. Correlation-based feature selection for discrete and numeric class machine learnin, in Proceedings of the 17th International Conference on Machine Learning (2000), pp. 359–366

    Google Scholar 

  27. P. Pudil, J. Novovičová, J. Kittler, Floating search methods in feature selection. Pattern Recogn. Lett. 15(11), 1119–1125 (1994)

    Article  Google Scholar 

  28. H. Liu, R. Setiono, et al., A probabilistic approach to feature selection-a filter solution, in Proceedings of 13th International Conference on Machine Learning, vol. 96. Citeseer (1996), pp. 19–327

    Google Scholar 

  29. G. Brassard, P. Bratley, Fundamentals of Algorithmics, vol. 524 (Prentice Hall, 1996)

    Google Scholar 

  30. J. Yang, V. Honavar, Feature subset selection using a genetic algorithm. IEEE Trans. Intell. Syst. 13(2), 44–49 (1998)

    Article  Google Scholar 

  31. M.L. Raymer, W.F. Punch, E.D. Goodman, L.A. Kuhn, A.K. Jain, Dimensionality reduction using genetic algorithms. IEEE Trans. Evol. Comput. 4(2), 164–171 (2000)

    Article  Google Scholar 

  32. Y.S. Ong, A.J. Keane, Meta-lamarckian learning in memetic algorithms. IEEE Trans. Evol. Comput. 8(2), 99–110 (2004)

    Article  Google Scholar 

  33. J.E. Baker, Adaptive selection methods for genetic algorithms, in Proceedings of the 1st International Conference on Genetic Algorithms. (Hillsdale, New Jersey, 1985), pp. 101–111

    Google Scholar 

  34. M. Robnik-Šikonja, I. Kononenko, Theoretical and empirical analysis of relieff and rrelieff. Mach. Learn. 53(1–2), 23–69 (2003)

    Article  MATH  Google Scholar 

  35. B.J. Frey, D. Dueck, Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Jia, Y. Qian, Z. Ji, Band selection for hyperspectral imagery using affinity propagation, in Proceedings of the 2008 Digital Image Computing: Techniques and Applications (2008), pp. 137–141

    Google Scholar 

  37. C.H. Ooi, P. Tan, Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics 19(1), 37–44 (2003)

    Article  Google Scholar 

  38. L. Li, C.R. Weinberg, T.A. Darden, L.G. Pedersen, Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the ga/knn method. Bioinformatics 17(12), 1131–1142 (2001)

    Article  Google Scholar 

  39. J.J. Liu, G. Cutler, W. Li, Z. Pan, S. Peng, T. Hoey, L. Chen, X.B. Ling, Multiclass cancer classification and biomarker discovery using ga-based algorithms. Bioinformatics 21(11), 2691–2697 (2005)

    Article  Google Scholar 

  40. C. Ambroise, G.J. McLachlan, Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. Natl. Acad. Sci. 99(10), 6562–6566 (2002)

    Article  MATH  Google Scholar 

  41. U.M. Braga-Neto, E.R. Dougherty, Is cross-validation valid for small-sample microarray classification? Bioinformatics 20(3), 374–380 (2004)

    Article  Google Scholar 

  42. T. Li, C. Zhang, M. Ogihara, A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20(15), 2429–2437 (2004)

    Article  Google Scholar 

  43. V. Vapnik, Statistical Learning Theory (John Wiley, 1998)

    Google Scholar 

  44. U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, A.J. Levine, Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. 96(12), 6745–6750 (1999)

    Article  Google Scholar 

  45. S.L. Pomeroy, P. Tamayo, M. Gaasenbeek, L.M. Sturla, M. Angelo, M.E. McLaughlin, J.Y.H. Kim, L.C. Goumnerova, P.M. Black, C. Lau et al., Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415(6870), 436–442 (2002)

    Article  Google Scholar 

  46. T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri et al., Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)

    Article  Google Scholar 

  47. L.J. Van’t Veer, H. Dai, M.J. Van De Vijver, Y.D. He, A.A.M. Hart, M. Mao, H.L. Peterse, K. Van Der Kooy, M.J. Marton, A.T. Witteveen, et al., Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871), 530–536 (2002)

    Google Scholar 

  48. G.J. Gordon, R.V. Jensen, L.-L. Hsiao, S.R. Gullans, J.E. Blumenstock, S. Ramaswamy, W.G. Richards, D.J. Sugarbaker, R. Bueno, Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Can. Res. 62(17), 4963–4967 (2002)

    Google Scholar 

  49. E.F. Petricoin III, A.M. Ardekani, B.A. Hitt, P.J. Levine, V.A. Fusaro, S.M. Steinberg, G.B. Mills, C. Simone, D.A. Fishman, E.C. Kohn et al., Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306), 572–577 (2002)

    Article  Google Scholar 

  50. C.L. Nutt, D.R. Mani, R.A. Betensky, P. Tamayo, J.G. Cairncross, C. Ladd, U. Pohl, C. Hartmann, M.E. McLaughlin, T.T. Batchelor et al., Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Can. Res. 63(7), 1602–1607 (2003)

    Google Scholar 

  51. A.A. Alizadeh, M.B. Eisen, R.E. Davis, C. Ma, I.S. Lossos, A. Rosenwald, J.C. Boldrick, H. Sabet, T. Tran, X. Yu et al., Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503–511 (2000)

    Article  Google Scholar 

  52. S.A. Armstrong, J.E. Staunton, L.B. Silverman, R. Pieters, M.L. den Boer, M.D. Minden, S.E. Sallan, E.S. Lander, T.R. Golub, S.J. Korsmeyer, Mll translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30(1), 41–47 (2002)

    Article  Google Scholar 

  53. J. Khan, J.S. Wei, M. Ringner, L.H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C.R. Antonescu, C. Peterson et al., Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7(6), 673–679 (2001)

    Article  Google Scholar 

  54. N. Yukinawa, S. Oba, K. Kato, K. Taniguchi, K. Iwao-Koizumi, Y. Tamaki, S. Noguchi, S. Ishii, A multi-class predictor based on a probabilistic model: application to gene expression profiling-based diagnosis of thyroid tumors. BMC Genomics 7(1), 190 (2006)

    Article  Google Scholar 

  55. P. Good, Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses (Springer Science & Business Media, 2013)

    Google Scholar 

  56. L. Bruzzone, C. Persello, A novel approach to the selection of spatially invariant features for the classification of hyperspectral images with improved generalization capability. IEEE Trans. Geosci. Remote Sens. 47(9), 3180–3191 (2009)

    Article  Google Scholar 

  57. R. Neher, A. Srivastava, A Bayesian MRF framework for labeling terrain using hyperspectral imaging. IEEE Trans. Geosci. Remote Sens. 43(6), 1363–1374 (2005)

    Article  Google Scholar 

  58. M.F. Baumgardner, L. L. Biehl, D.A. Landgrebe, 220 band aviris hyperspectral image data set: June 12, 1992 Indian pine test site 3, Sep 2015

    Google Scholar 

  59. F. Melgani, L. Bruzzone, Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)

    Article  Google Scholar 

  60. Y.C. Jin, Knowledge Incorporation in Evolutionary Computation. Studies in Fuzziness and Soft Computing (Springer, 2010)

    Google Scholar 

  61. P. Cunningham, B. Smyth, Case-based reasoning in scheduling: reusing solution components. Int. J. Product. Res. 35(4), 2947–2961 (1997)

    Article  MATH  Google Scholar 

  62. S.J. Louis, J. McDonnell, Learning with case-injected genetic algorithms. IEEE Trans. Evol. Comput. 8(4), 316–328 (2004)

    Article  Google Scholar 

  63. R. Dawkins, The Selfish Gene (Oxford University Press, Oxford, 1976)

    Google Scholar 

  64. Y.S. Ong, M.H. Lim, X.S. Chen, Research frontier: - past, present & future. IEEE Comput. Intell. Mag. 5(2), 24–36 (2010)

    Article  Google Scholar 

  65. F. Neri, C. Cotta, P. Moscato, Handbook of Memetic Algorithms. Studies in Computational Intelligence (Springer, 2011)

    Google Scholar 

  66. X. Chen, Y. Ong, M. Lim, K.C. Tan, A multi-facet survey on memetic computation. IEEE Trans. Evol. Comput. 15(5), 591–607 (2011)

    Article  Google Scholar 

  67. M. Minsky, The Society of Mind (Simon & Schuster, Inc., 1986)

    Google Scholar 

  68. A. Gretton, O. Bousquet, A. Smola, B. Sch\(\ddot{o}\)lkopf, Measuring statistical dependence with Hilbert-Schmidt norms, in Proceedings of Algorithmic Learning Theory, pp. 63–77 (2005)

    Google Scholar 

  69. S.C.H. Hoi, J. Zhuang, I. Tsang, A family of simple non-parametric kernel learning algorithms. J. Mach. Learn. Res. (JMLR), 12, 1313–1347 (2011)

    Google Scholar 

  70. L. Song, A. Smola, A. Gretton, K.M. Borgwardt, A dependence maximization view of clustering, in Proceedings of the 24th International Conference on Machine learning (2007), pp. 815–822

    Google Scholar 

  71. M.A. Runco, S. Pritzker, Encyclopedia of Creativity (Academic Press, 1999)

    Google Scholar 

  72. M. Dror, Arc Routing. Theory, Solutions and Applications (Kluwer Academic Publishers, Boston, 2000)

    Google Scholar 

  73. P. Lacomme, C. Prins, W. Ramdane-Cherif, Competitive memetic algorithms for arc routing problems. Ann. Oper. Res. 131(1), 159–185 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  74. Y. Mei, K. Tang, X. Yao, Improved memetic algorithm for capacitated arc routing problem. IEEE Congr. Evol. Comput. 1699–1706 (2009)

    Google Scholar 

  75. B. Golden, R. Wong, Capacitated arc routing problems. Networks 11(3), 305–315 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  76. E.W. Dijkstra, A note on two problems in connection with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  77. I. Borg, P.J.F. Groenen, Modern Multidimensional Scaling: Theory and Applications (Springer, 2005)

    Google Scholar 

  78. B.L. Golden, J.S. DeArmon, E.K. Baker, Computational experiments with algorithms for a class of routing problems. Comput. Oper. Res. 10(1), 47–59 (1983)

    Article  MathSciNet  Google Scholar 

  79. G. Ulusoy, The fleet size and mix problem for capacitated arc routing. Eur. J. Oper. Res. 22(3), 329–337 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  80. G. Dantzig, J.H. Ramser, The truck dispatching problem. Manage. Sci. 6, 80–91 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  81. X.S. Chen, Y.S. Ong, Q.H. Nguyen, A conceptual modeling of meme complexes in stochastic search. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(5), 612–625 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Feng .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, L., Hou, Y., Zhu, Z. (2021). Optinformatics Within a Single Problem Domain. In: Optinformatics in Evolutionary Learning and Optimization. Adaptation, Learning, and Optimization, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-70920-4_3

Download citation

Publish with us

Policies and ethics