Skip to main content

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 25))

  • 201 Accesses

Abstract

Evolutionary algorithm is one of the most well-established classes of meta-heuristics. Besides optinformatics in evolutionary learning and optimization, knowledge mining and reuse has also been proposed for improving the performance of many meta-heuristic methods. To provide the reader a comprehensive background of optinformatics, this chapter presents a review on meta-heuristics and knowledge learning and transfer in meta-heuristics. Moreover, as optinformatics represents a form of memetic computation which has been defined as a computational paradigm that incorporates the notion of meme(s) as basic units of transferable information encoded in computational representations for enhancing the performance of artificial evolutionary systems in the domain of search and optimization [1], the introduction of memetic computation is also presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. Chen, Y. Ong, M. Lim, K.C. Tan, A multi-facet survey on memetic computation. IEEE Transactions on Evolutionary Computation 15(5), 591–607 (2011)

    Article  Google Scholar 

  2. K. Sörensen, F. Glover, Metaheuristics. Encycl. Oper. Res. Manag. Sci. 62, 960–970 (2013)

    Google Scholar 

  3. R. Balamurugan, A. Natarajan, K. Premalatha, Stellar-mass black hole optimization for biclustering microarray gene expression data. Appl. Artif. Intell. 29(4), 353–381 (2015)

    Article  Google Scholar 

  4. I. Rechenberg, Cybernetic Solution Path of an Experimental Problem (Royal Aircraft Establishment Library Translation, 1965)

    Google Scholar 

  5. S.F. Fogel, A.J. Owens, Artificial Intelligence Through Simulated Evolution (Wiley, New York, NY, USA, 1966)

    MATH  Google Scholar 

  6. J.H. Holland, Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (MIT Press, 1992)

    Google Scholar 

  7. F. Glover, Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1), 156–166 (1977)

    Article  Google Scholar 

  8. S.F. Smith, A learning system based on genetic adaptive algorithms. Ph.D. Dissertation, University of Pittsburgh, 1980

    Google Scholar 

  9. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  10. F. Glover, Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)

    Article  MathSciNet  Google Scholar 

  11. M. Dorigo, Optimization, learning and natural algorithms. Ph.D. Dissertation, Politecnico di Milano, Italie, 1992

    Google Scholar 

  12. K. Chakhlevitch, P. Cowling, Hyperheuristics: recent developments, in Adaptive and Multilevel Metaheuristics (Springer, 2008), pp. 3–29

    Google Scholar 

  13. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of 1995 International Conference on Neural Networks, vol. 4 (IEEE, 1995), pp. 1942–1948

    Google Scholar 

  14. R. Storn, K. Price, Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  15. Z.W. Geem, J.H. Kim, G.V. Loganathan, A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  16. K.M. Passino, Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22(3), 52–67 (2002)

    Article  Google Scholar 

  17. D. Karaboga, An idea based on honey bee swarm for numerical optimization. Technical Report, Technical report-tr06 (Erciyes University, 2005)

    Google Scholar 

  18. X.-S. Yang, Firefly algorithms for multimodal optimization, in 5th International Symposium on Stochastic Algorithms (Springer, 2009), pp. 169–178

    Google Scholar 

  19. X.-S. Yang, S. Deb, Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 1(4), 330–343 (2010)

    MATH  Google Scholar 

  20. H.R. Lourenço, O.C. Martin, T. Stützle, Iterated local search, in Handbook of Metaheuristics (Springer, 2003), pp. 320–353

    Google Scholar 

  21. N. Mladenović, P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)

    Article  MathSciNet  Google Scholar 

  22. C. Voudouris, E. Tsang, Guided local search and its application to the traveling salesman problem. Eur. J. Oper. Res. 113(2), 469–499 (1999)

    Article  Google Scholar 

  23. P. Moscato, On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report 826 (1989)

    Google Scholar 

  24. T.S. Duque, D.E. Goldberg, K. Sastry, Improving the efficiency of the extended compact genetic algorithm, in Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 467–468 (2008)

    Google Scholar 

  25. Z.-J. Lee, C.-Y. Lee, A hybrid search algorithm with heuristics for resource allocation problem. Inf. Sci. 173(1–3), 155–167 (2005)

    Article  Google Scholar 

  26. B. Liu, L. Wang, Y.-H. Jin, An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 37(1), 18–27 (2007)

    Google Scholar 

  27. J. Yang, L. Sun, H.P. Lee, Y. Qian, Y. Liang, Clonal selection based memetic algorithm for job shop scheduling problems. J. Bionic Eng. 5(2), 111–119 (2008)

    Article  Google Scholar 

  28. Y.S. Ong, A.J. Keane, Meta-lamarckian learning in memetic algorithms. IEEE Trans. Evol. Comput. 8(2), 99–110 (2004)

    Article  Google Scholar 

  29. J.E. Smith, Coevolving memetic algorithms: a review and progress report. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 37, 6–17 (2017)

    Google Scholar 

  30. Q.H. Nguyen, Y.S. Ong, M.H. Lim, N. Krasnogor, Adaptive cellular memetic algorithms. Evol. Comput. 17(2), 231–256 (2009)

    Article  Google Scholar 

  31. Q.H. Nguyen, Y.S. Ong, M.H. Lim, A probabilistic memetic framework. IEEE Trans. Evol. Comput. 13(3), 604–623 (2009)

    Article  Google Scholar 

  32. X. Chen, Y.-S. Ong, M.-H. Lim, K.C. Tan, A multi-facet survey on memetic computation. IEEE Trans. Evol. Comput. 15(5), 591–607 (2011)

    Article  Google Scholar 

  33. F. Neri, C. Cotta, P. Moscato, Handbook of Memetic Algorithms, vol. 379 (Springer, 2011)

    Google Scholar 

  34. A. Gupta, Y.S. Ong, Memetic Computation: The Mainspring of Knowledge Transfer in a Data-Driven Optimization Era, vol. 21 (Springer, 2018)

    Google Scholar 

  35. S.J. Louis, J. McDonnell, Learning with case-injected genetic algorithms. IEEE Trans. Evol. Comput. 8(4), 316–328 (2004)

    Article  Google Scholar 

  36. P. Cunningham, B. Smyth, Case-based reasoning in scheduling: reusing solution components. Int. J. Prod. Res. 35(4), 2947–2961 (1997)

    Article  Google Scholar 

  37. S. Yang, X. Yao, Population-based incremental learning with associative memory for dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)

    Article  MathSciNet  Google Scholar 

  38. M. Pelikan, M.W. Hauschild, Learn from the past: improving model-directed optimization by transfer learning based on distance-based bias. Missouri Estimation of Distribution Algorithms Laboratory, University of Missouri in St. Louis, MO, United States. Technical Report, p. 2012007 (2012)

    Google Scholar 

  39. R. Santana, A. Mendiburu, J.A. Lozano, Structural transfer using edas: an application to multimarker tagging SNP selection. IEEE Congress on Evolutionary Computation, pp. 1–8 (2012)

    Google Scholar 

  40. M. Iqbal, W. Browne, M.J. Zhang, Reusing building blocks of extracted knowledge to solve complex, large-scale boolean problems. IEEE Trans. Evol. Comput. 18, 465–580 (2014)

    Article  Google Scholar 

  41. L. Feng, Y.S. Ong, A.H. Tan, I.W. Tsang, Memes as building blocks: a case study on evolutionary optimization \(+\) transfer learning for routing problems. Memet. Comput. 7(3), 159–180 (2015)

    Article  Google Scholar 

  42. E. Haslam, B. Xue, M. Zhang, Further investigation on genetic programming with transfer learning for symbolic regression, in 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 3598–3605 (2016)

    Google Scholar 

  43. L. Feng, Y. Ong, S. Jiang, A. Gupta, Autoencoding evolutionary search with learning across heterogeneous problems. IEEE Trans. Evol. Comput. 21(5), 760–772 (2017)

    Article  Google Scholar 

  44. A. Gupta, Y. Ong, L. Feng, Multifactorial evolution: toward evolutionary multitasking. IEEE Trans. Evol. Comput. 20(3), 343–357 (2016)

    Article  Google Scholar 

  45. A. Gupta, Y.S. Ong, L. Feng, K.C. Tan, Multi-objective multifactorial optimization in evolutionary multitasking. IEEE Trans. Cybern. 47(7), 1652–1665 (2017)

    Article  Google Scholar 

  46. L. Zhou, L. Feng, J. Zhong, Y.S. Ong, Z. Zhu, E. Sha, Evolutionary multitasking in combinatorial search spaces: a case study in capacitated vehicle routing problem, in 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016)

    Google Scholar 

  47. Y.W. Wen, C.K. Ting, Parting ways and reallocating resources in evolutionary multitasking, in 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2404–2411 (2017)

    Google Scholar 

  48. R.T. Liaw, C.K. Ting, Evolutionary many-tasking based on biocoenosis through symbiosis: a framework and benchmark problems, in 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2266–2273 (2017)

    Google Scholar 

  49. K.K. Bali, A. Gupta, L. Feng, Y.S. Ong, T.P. Siew, Linearized domain adaptation in evolutionary multitasking, in 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1295–1302 (2017)

    Google Scholar 

  50. R. Dawkins, The Selfish Gene (Oxford University Press, Oxford, 1976)

    Google Scholar 

  51. S. Blackmore, The Meme Machine, vol. 25 (Oxford University Press, 2000)

    Google Scholar 

  52. G. Grant, Memetic lexicon. Principia Cybernetica Web (1990)

    Google Scholar 

  53. J. Delius, Of mind memes and brain bugs; a natural history of culture. Nature and Culture, pp. 26–79 (1989)

    Google Scholar 

  54. D.C. Dennett, Consciousness explained (Penguin UK, 1993)

    Google Scholar 

  55. L. Gabora, The origin and evolution of culture and creativity. J. Memet.: Evol. Model. Inf. Transm. 1(1), 1–28 (1997)

    Google Scholar 

  56. J.C. Spall, Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, vol. 65 (Wiley, 2005)

    Google Scholar 

  57. Y.-S. Ong, M.-H. Lim, N. Zhu, K.-W. Wong, Classification of adaptive memetic algorithms: a comparative study. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 36(1), 141–152 (2006)

    Google Scholar 

  58. E. Özcan, B. Bilgin, E.E. Korkmaz, A comprehensive analysis of hyper-heuristics. Intell. Data Anal. 12(1), 3–23 (2008)

    Article  Google Scholar 

  59. P. Moscato, C. Cotta, Memetic algorithms. Handbook of Applied Optimization, pp. 157–167 (2002)

    Google Scholar 

  60. T. Bäck, U. Hammel, H.-P. Schwefel, Evolutionary computation: comments on the history and current state. IEEE Trans. Evol. Comput. 1(1), 3–17 (1997)

    Article  Google Scholar 

  61. M.A. Runco, S. Pritzker, Encyclopedia of Creativity (Academic Press, 1999)

    Google Scholar 

  62. A.-H. Tan, L. Ning, D. Xiao, Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback. IEEE Trans. Neural Netw. 19(2), 230–244 (2008)

    Article  Google Scholar 

  63. Y. Kameya, J. Kumagai, Y. Kurata, Accelerating genetic programming by frequent subtree mining, in Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation (ACM, 2008), pp. 1203–1210

    Google Scholar 

  64. S.-S. Choi, K. Jung, B.-R. Moon, Lower and upper bounds for linkage discovery. IEEE Trans. Evol. Comput. 13(2), 201–216 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Feng .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, L., Hou, Y., Zhu, Z. (2021). Preliminary. In: Optinformatics in Evolutionary Learning and Optimization. Adaptation, Learning, and Optimization, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-70920-4_2

Download citation

Publish with us

Policies and ethics