Skip to main content

Design of Inductor-Capacitor Circuits for Wireless Power Transfer for Biomedical Applications

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1350)

Abstract

This paper presents an analytical design approach for planar inductor-capacitor (LC) circuits for biomedical wireless power transfer (WPT) applications. This research makes use of the resonant inductive coupling between a transmitter and receiver coil in a series-parallel topology. The micro-electromechanical systems (MEMS)-based LC circuits are operated within a frequency range of 10–300 MHz. Several design cases are realized by varying the values of the number of turns, line width, and spacing width of the coil, while maintaining resonant frequency ranges circuits sizes that are compatible with biomedical applications and MEMS fabrication standards. In addition, the effects of such variations on the resonant frequency and quality factor are investigated. The findings of this paper present a simple approach to achieve different design requirements of planar LC circuits in WPT applications.

Keywords

  • MEMS
  • Quality factor
  • Resonant frequency
  • Wireless power transfer

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hojjati-Firoozabadi, A., Azarfar, A., Shahabadi, M.: Compact wireless power transfer system with microstrip-driven coupled dielectric resonators. AEU – Int. J. Electron. Commun. 127, 153445 (2020)

    CrossRef  Google Scholar 

  2. Chee, P.S., Minjal, M.N., Leow, P.L., Ali, M.S.M.: Wireless powered thermo-pneumatic micropump using frequency-controlled heater. Sens. Actuat. A: Phys. 233, 1–8 (2015)

    CrossRef  Google Scholar 

  3. Eteng, A.A., Rahim, S.K.A., Leow, C.Y., Jayaprakasam, S., Chew, B.W.: Low-power near-field magnetic wireless energy transfer links: a review of architectures and design approaches. Renew. Sustain. Energy Rev. 77, 486–505 (2017)

    CrossRef  Google Scholar 

  4. Sun, L., Ma, D., Tang, H.: A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging. Renew. Sustain. Energy Rev. 91, 490–503 (2018)

    CrossRef  Google Scholar 

  5. Chhawchharia, S., Sahoo, S.K., Balamurugan, M., Sukchai, S., Yanine, F.: Investigation of wireless power transfer applications with a focus on renewable energy. Renew. Sustain. Energy Rev. 91, 888–902 (2018)

    CrossRef  Google Scholar 

  6. Chee, P.S., Nafea, M., Leow, P.L., Ali, M.S.M.: Thermal analysis of wirelessly powered thermo-pneumatic micropump based on planar LC circuit. J. Mech. Sci. Technol. 30(6), 2659–2665 (2016)

    CrossRef  Google Scholar 

  7. Li, L., Wang, Z., Gao, F., Wang, S., Deng, J.: A family of compensation topologies for capacitive power transfer converters for wireless electric vehicle charger. Appl. Energy 260, 114156 (2020)

    CrossRef  Google Scholar 

  8. Frechter, Y., Kuperman, A.: Analysis and design of inductive wireless power transfer link for feedback-less power delivery to enclosed compartment. Appl. Energy 278, 115743 (2020)

    CrossRef  Google Scholar 

  9. Ustun, D., Balci, S., Sabanci, K.: A parametric simulation of the wireless power transfer with inductive coupling for electric vehicles, and modelling with artificial bee colony algorithm. Meas.: J. Int. Meas. Confed. 150, 107082 (2020)

    CrossRef  Google Scholar 

  10. Iwasaki, W., Ishida, S., Kondo, D., Ito, Y., Tateno, J., Tomioka, M.: Monitoring of the core body temperature of cows using implantable wireless thermometers. Comput. Electron. Agric. 163, 104849 (2019)

    CrossRef  Google Scholar 

  11. Zhang, B., Carlson, R.B., Smart, J.G., Dufek, E.J., Liaw, B.: Challenges of future high power wireless power transfer for light-duty electric vehicles––technology and risk management. eTransportation 2, 100012 (2019)

    CrossRef  Google Scholar 

  12. Mohd Ghazali, F.A., Hasan, M.N., Rehman, T., Nafea, M., Mohamed Ali, M.S., Takahata, K.: MEMS actuators for biomedical applications: a review. J. Micromech. Microeng. 30(7), 073001 (2020)

    CrossRef  Google Scholar 

  13. Rehman, T., Faudzi, A.A., Nafea, M., Mohamed Ali, M.S.: PDMS-based dual-channel pneumatic microactuator using sacrificial molding fabrication technique. In: 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII, pp. 1788–1791 (2019)

    Google Scholar 

  14. Truong, B.D., Andersen, E., Casados, C., Roundy, S.: Magnetoelectric wireless power transfer for biomedical implants: effects of non-uniform magnetic field, alignment and orientation. Sens. Actuat. A 316, 112269 (2020)

    CrossRef  Google Scholar 

  15. Dinis, H., Mendes, P.M.: A comprehensive review of powering methods used in state-of-the-art miniaturized implantable electronic devices. Biosens. Bioelectron. 172, 112781 (2020)

    CrossRef  Google Scholar 

  16. Nafea, M., Nawabjan, A., Mohamed Ali, M.S.: A wirelessly-controlled piezoelectric microvalve for regulated drug delivery. Sens. Actuat. A: Phys. 279, 191–203 (2018)

    CrossRef  Google Scholar 

  17. Salem, M., Ramachandaramurthy, V.K., Jusoh, A., Padmanaban, S., Kamarol, M., Teh, J., Ishak, D.: Three-phase series resonant DC-DC boost converter with double LLC resonant tanks and variable frequency control. IEEE Access 8, 22386–22399 (2020)

    CrossRef  Google Scholar 

  18. Nafea, M., Ahmad, N., Wahap, A.R., Ali, M.S.M.: Modeling and simulation of a wireless passive thermopneumatic micromixer. In: Communications in Computer and Information Science, pp. 312–322 (2017)

    Google Scholar 

  19. Barman, S.D., Reza, A.W., Kumar, N., Karim, M.E., Munir, A.B.: Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications. Renew. Sustain. Energy Rev. 51, 1525–1552 (2015)

    CrossRef  Google Scholar 

  20. Luo, Z., Wei, X.: Analysis of square and circular planar spiral coils in wireless power transfer system for electric vehicles. IEEE Trans. Industr. Electron. 65(1), 331–341 (2018)

    CrossRef  MathSciNet  Google Scholar 

  21. Duan, Z., Guo, Y.X., Kwong, D.L.: Rectangular coils optimization for wireless power transmission. Radio Sci. 47(3), 1–10 (2012)

    CrossRef  Google Scholar 

  22. Nafea, M., Abuzaiter, A., Kazi, S., Mohamed Ali, M.S.: Frequency-controlled wireless passive thermopneumatic micromixer. J. Microelectromech. Syst. 26(3), 691–703 (2017)

    CrossRef  Google Scholar 

  23. Raju, S., Wu, R., Chan, M., Yue, C.P.: Modeling of mutual coupling between planar inductors in wireless power applications. IEEE Trans. Power Electron. 29(1), 481–490 (2014)

    CrossRef  Google Scholar 

  24. Sekiya, N., Monjugawa, Y.: A novel REBCO wire structure that improves coil quality factor in mhz range and its effect on wireless power transfer systems. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)

    CrossRef  Google Scholar 

  25. Nafea, M., Abuziater, A., Faris, O., Kazi, S., Ali, M.S.M.: Selective wireless control of a passive thermopneumatic micromixer. In: 2016 IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 792–795 (2016)

    Google Scholar 

  26. Sinha, S., Kumar, A., Regensburger, B., Afridi, K.K.: A new design approach to mitigating the effect of parasitics in capacitive wireless power transfer systems for electric vehicle charging. IEEE Trans. Transp. Electrif. 5(4), 1040–1059 (2019)

    CrossRef  Google Scholar 

  27. Nafea, M., Baliah, J., Ali, MSM.: Modeling and simulation of a wirelessly-powered thermopneumatic micropump for drug delivery applications. Indon. J. Electr. Eng. Inf. 7(2), 182–189 (2019).

    Google Scholar 

  28. Zhang, Y., Zhao, Z., Chen, K.: Frequency decrease analysis of resonant wireless power transfer. IEEE Trans. Power Electron. 29(3), 1058–1063 (2014)

    CrossRef  Google Scholar 

  29. Rifai, S.A.M., Nafea, M., Debnath, SK., Bagchi, S.: Hybrid hysteresis-inversion and PSO-tuned PID control for piezoelectric micropositioning stages. In: 2020 IEEE Student Conference on Research and Development (SCOReD), pp. 206–210. IEEE (2020).

    Google Scholar 

  30. Kim, D., Abu-Siada, A., Sutinjo, A.: State-of-the-art literature review of WPT: Current limitations and solutions on IPT. Electr. Power Syst. Res. 154, 493–502 (2018)

    CrossRef  Google Scholar 

Download references

Acknowledgment

The authors acknowledge financial support from the University of Nottingham Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwan Nafea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goh, J.G.L.L., Nafea, M., Mohamed Ali, M.S. (2021). Design of Inductor-Capacitor Circuits for Wireless Power Transfer for Biomedical Applications. In: Mat Jizat, J.A., et al. Advances in Robotics, Automation and Data Analytics. iCITES 2020. Advances in Intelligent Systems and Computing, vol 1350. Springer, Cham. https://doi.org/10.1007/978-3-030-70917-4_9

Download citation