Skip to main content

Experimental Observation of Magnetic Monopoles in Spin Ice

  • Chapter
  • First Online:
Spin Ice

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 197))

  • 1286 Accesses

Abstract

In spin ice, the model of magnetic monopoles arises as a transformation of the dipolar spin ice Hamiltonian developed for materials such as Dy\(_{2}\)Ti\(_{2}\)O\(_{7}\)  and Ho\(_{2}\)Ti\(_{2}\)O\(_{7}\). The treatment of spin ice in terms of an effective theory of emergent monopoles presents both theoretical and experimental challenges. In this chapter we give ‘monopole theory’ a precise definition which allows us to critically assess the extent to which magnetic monopoles have been observed in experiment. We start by answering some basic questions: what magnetic monopoles are, whether or not they are quasiparticles, to what extent they form a ‘magnetic electrolyte’ and what it means to observe them. We then introduce the main experimental techniques and their relation with the monopole theory, before comparing experimental results on the canonical spin ices Ho\(_{2}\)Ti\(_{2}\)O\(_{7}\) and Dy\(_{2}\)Ti\(_{2}\)O\(_{7}\) with theoretical expectations. We conclude with some comments on different viewpoints on magnetic monopoles, different definitions and disagreements in the literature. Our main conclusion is that the monopole theory is strongly supported by experiment. The Chapter is organised as follows:

  • 8.1 Introduction What are magnetic monopoles in spin ice? Magnetic monopoles as quasiparticles. Confirmation or falsification of monopole theory. Spin ice as a magnetic electrolyte. Direct observation of magnetic monopoles.

  • 8.2 Quantities available to experiment Equilibrium thermodynamics. Linear response and non-equlibrium thermodynamics.

  • 8.3 Experiments in weak applied fields Magnetisation correlations measured by neutron scattering. Specific heat. dc-Susceptibility. ac-Susceptibility. Summary: success and failures of the monopole theory in the weak field regime.

  • 8.4 Experiments in strong applied fields Monopole condensation with applied field along [111]. Strong field correlations. Strong field sweeps and quenches.

  • 8.5 Monopole derived properties Thermal Conductivity. Field distribution at point probes. Dielectric response.

  • 8.6 Future directions for monopole observation Plasmas. Phonons. New materials. Quantum spin ice.

  • 8.7 Conclusions Different viewpoints. Definitions and disagreements. Final word.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly the auxiliary variable is \({\boldsymbol{\varOmega }}(\mathbf{r},t) = \mathbf{M}(\mathbf{r},t)/Q\), the configuration vector [13].

  2. 2.

    In chemical thermodynamics, ideal solution equations involving the concentration or mole fraction x of a species, are applied to non-ideal solutions by replacing the mole fraction with activity a. The activity coefficient is defined as \(\gamma = a/x\). Note that \(\gamma \) is always precisely defined and measurable: the theoretical challenge is to calculate it.

  3. 3.

    Defined here as ratio of monopole drift velocity to local (H-) field at zero concentration gradient.

  4. 4.

    The ‘quantum’ of charge is material-specific because it depends on the single-ion magnetic moment and lattice spacing of the spin ice under study [10].

  5. 5.

    In principle, it is weakly temperature dependent as a result of thermal expansion, but high precision neutron Larmor diffraction experiments cannot resolve any thermal expansion in the relevant temperature range for either Dy\(_{2}\)Ti\(_{2}\)O\(_{7}\) or Ho\(_{2}\)Ti\(_{2}\)O\(_{7}\) [36].

  6. 6.

    This behaviour is of interest for another reason: it is a signature of ‘topological sector fluctuations’ in a harmonic field [37].

  7. 7.

    Unfortunately both entropy and correlation function are invariably denoted by S, the context should make clear which we are referring to.

  8. 8.

    If the incident neutron polarisation is perpendicular to the scattering plane then spin flip scattering (which flips the neutron spin) isolates the in-plane component of the fluctuating magnetisation, as in Fig. 8.2, while non-spin flip scattering isolates the out-of-plane component.

  9. 9.

    In Ho\(_{2}\)Ti\(_{2}\)O\(_{7}\) the chemical potential is \(\mu /k = 5.7\) K and the Coulomb energy per monopole is 1.5 K; Debye-Hückel screening at high temperature lowers the effective chemical potential to slightly less than \(\mu _\mathrm{eff}/k = 5.7 -1.5\) K or approximately 4 K—hence \(\sqrt{n}\) varies with an exponential amplitude of \(\sim 2\) K.

  10. 10.

    Note that in [53] the parameter \(\xi _\mathrm{ice}\) needs to be divided by \(2\pi \) to get \(l_\mathrm{diff}\).

  11. 11.

    Note the different convention with respect to \(2\pi \) in the works of Snyder et al. [86].

  12. 12.

    Another spin model with a type of ice rule constraint on the kagome lattice was orginally studied by Wills et al. [122] and referred to as kagome spin ice. It is topologically distinct to kagome ice in spin ice, as it lacks the constraint on the ice rule introduced by the interlayer spins [123]. However, it is the prototype of many artificial spin ices.

  13. 13.

    Deflagration is “combustion which propagates through a gas or across the surface of an explosive at subsonic speeds, driven by the transfer of heat.”

  14. 14.

    For example the detailed theory of pinch points [18, 60] post-dated experiments [53, 58] on them.

References

  1. M.J. Harris, S.T. Bramwell, D.F. McMorrow, T. Zeiske, K.W. Godfrey, Phys. Rev. Lett. 79, 2554 (1997). https://doi.org/10.1103/PhysRevLett.79.2554

  2. S.T. Bramwell, M.J. Harris, J. Phys.: Condens. Matter 10, L215 (1998). https://doi.org/10.1088/0953-8984/10/14/002

  3. B.C. den Hertog, M.J.P. Gingras, Phys. Rev. Lett. 84, 3430 (2000). https://doi.org/10.1103/PhysRevLett.84.3430

  4. T. Yavors’kii, T. Fennell, M.J.P. Gingras, S.T. Bramwell, Phys. Rev. Lett. 101, 037204 (2008). https://doi.org/10.1103/PhysRevLett.101.037204

  5. S.T. Bramwell, M.J.P. Gingras, Science 294, 1495 (2001). https://doi.org/10.1126/science.1064761

  6. S.T. Bramwell, M.J. Harris, B.C. den Hertog, M.J.P. Gingras, J.S. Gardner, D.F. McMorrow, A.R. Wildes, A.L. Cornelius, J.D.M. Champion, R.G. Melko, T. Fennell, Phys. Rev. Lett. 87, 047205 (2001). https://doi.org/10.1103/PhysRevLett.87.047205

  7. T. Fennell, O.A. Petrenko, B. Fåk, S.T. Bramwell, M. Enjalran, T. Yavors’kii, M.J.P. Gingras, R.G. Melko, G. Balakrishnan, Phys. Rev. B 70, 134408 (2004). https://doi.org/10.1103/PhysRevB.70.134408

  8. M.J.P. Gingras, B.C. den Hertog, Can. J. Phys. 79, 1339 (2001). https://doi.org/10.1139/p01-099

  9. S.V. Isakov, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 95, 217201 (2005). https://doi.org/10.1103/PhysRevLett.95.217201

  10. C. Castelnovo, R. Moessner, S.L. Sondhi, Nature 451, 42 (2008). https://doi.org/10.1038/nature06433

  11. L.D.C. Jaubert, P.C.W. Holdsworth, Nat. Phys. 5, 258 (2009). https://doi.org/10.1038/NPHYS1227

  12. L.D.C. Jaubert, P.C.W. Holdsworth, J. Phys.: Condens. Matter 23, 164222 (2011). https://doi.org/10.1088/0953-8984/23/16/164222

  13. I.A. Ryzhkin, J. Exp. Theor. Phys. 101, 481 (2005). https://doi.org/10.1134/1.2103216

  14. I.A. Ryzhkin, Solid State Commun. 52, 49 (1984). https://doi.org/10.1134/1.2103216

  15. R.J. Glauber, J. Math. Phys. 4, 294 (1963). https://doi.org/10.1063/1.1703954

  16. R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 105, 166401 (2010). https://doi.org/10.1103/PhysRevLett.105.166401

  17. A.C. Maggs, V. Rossetto, Phys. Rev. Lett. 88, 196402 (2002). https://doi.org/10.1103/PhysRevLett.88.196402

  18. M.I. Ryzhkin, I.A. Ryzhkin, S.T. Bramwell, Europhys. Lett. 104, 37005 (2013). https://doi.org/10.1209/0295-5075/104/37005

  19. C. Castelnovo, R. Moessner, S.L. Sondhi, Phys. Rev. B 84, 144435 (2011). https://doi.org/10.1103/PhysRevB.84.144435

  20. V.F. Petrenko, R.W. Whitworth, Physics of Ice (Oxford University Press, Oxford, 1999). ISBN 9780198518945

    Google Scholar 

  21. W.J. Moore, Physical Chemistry (Longmans Green and Co., London, 1963)

    Google Scholar 

  22. L. Onsager, J. Chem. Phys. 2, 599 (1934). https://doi.org/10.1063/1.1749541

  23. L. Onsager, Science 166, 1359 (1969). https://doi.org/10.1126/science.166.3911.1359

  24. M.E. Fisher, Y. Levin, Phys. Rev. Lett. 71, 3826 (1993). https://doi.org/10.1103/PhysRevLett.71.3826

  25. V. Kobelev, A.B. Kolomeisky, M.E. Fisher, J. Chem. Phys. 116, 7589 (2002). https://doi.org/10.1063/1.1464827

  26. P.L. Galison, Image and Logic: A Material Culture of Microphysics (University of Chicago Press, Chicago and London, 1997). ISBN 9780226279176

    Google Scholar 

  27. N. Romming, C. Hanneken, M. Menzel, J.E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, R. Wiesendanger, Science 341, 636 (2013). https://doi.org/10.1126/science.1240573

  28. A.J. Schofield, Contemp. Phys. 40, 95 (1999). https://doi.org/10.1080/001075199181602

  29. H.L. Stormer, D.C. Tsui, A.C. Gossard, Rev. Mod. Phys. 71, S298 (1999). https://doi.org/10.1103/RevModPhys.71.S298

  30. G.E. Volovik, The Universe in a Helium Droplet (Oxford University Press, Oxford, 2009). https://doi.org/10.1093/acprof:oso/9780199564842.001.0001

  31. S.T. Bramwell, M.J.P. Gingras, P.C.W. Holdsworth, Spin ice, chapter in Frustrated Spin Systems, ed. by H.T. Diep (World Scientific, Singapore, 2005). https://doi.org/10.1142/9789814440745_0007

  32. S. Cukierman, Biochim. Biophys. Acta 1757, 876 (2006). https://doi.org/10.1016/j.bbabio.2005.12.001

  33. C. Castelnovo, R. Moessner, S.L. Sondhi, Annu. Rev. Condens. Matter Phys. 3, 35 (2012). https://doi.org/10.1146/annurev-conmatphys-020911-125058

  34. I.A. Ryzhkin, M.I. Ryzhkin, JETP Lett. 93, 384 (2011). https://doi.org/10.1134/S0021364011070095

  35. V. Kaiser, S.T. Bramwell, P.C.W. Holdsworth, R. Moessner, Phys. Rev. Lett. 115, 037201 (2015). https://doi.org/10.1103/PhysRevLett.115.037201

  36. M. Ruminy, F. Groitl, T. Keller, T. Fennell, Phys. Rev. B 94, 174406 (2016). https://doi.org/10.1103/PhysRevB.94.174406

  37. L.D.C. Jaubert, M.J. Harris, T. Fennell, R.G. Melko, S.T. Bramwell, P.C.W. Holdsworth, Phys. Rev. X 3, 011014 (2013). https://doi.org/10.1103/PhysRevX.3.011014

  38. L. Bovo, L.D.C. Jaubert, P.C.W. Holdsworth, S.T. Bramwell, J. Phys.: Condens. Matter 25, 386002 (2013). https://doi.org/10.1088/0953-8984/25/38/386002

  39. M. Twengström, L. Bovo, M.J.P. Gingras, S.T. Bramwell, P. Henelius, Phys. Rev. Mater. 1, 044406 (2017). https://doi.org/10.1103/PhysRevMaterials.1.044406

  40. W. Marshall, R.D. Lowde, Rep. Prog. Phys. 31, 705 (1968). https://doi.org/10.1088/0034-4885/31/2/305

  41. R.W. White, Quantum Theory of Magnetism (Springer, Berlin, 1983). ISBN 978-3-540-85416-6

    Google Scholar 

  42. G. Ehlers, A.L. Cornelius, M. Orendác, M. Kajnaková, T. Fennell, S.T. Bramwell, J.S. Gardner, J. Phys.: Condens. Matter 15, L9 (2003). https://doi.org/10.1088/0953-8984/15/2/102

  43. G. Ehlers, A.L. Cornelius, T. Fennell, M. Koza, S.T. Bramwell, J.S. Gardner, J. Phys.: Condens. Matter 16, S635 (2004). https://doi.org/10.1088/0953-8984/16/11/010

  44. C. Jaccard, Phys. Kondens. Materie 3, 99 (1964). https://doi.org/10.1007/BF02422356

  45. W. Van Roosbroeck, Bell Systems Technical Journal 29, 560 (1950). https://archive.org/details/bellsystemtechni00amerrich

  46. R.G. Melko, B.C. den Hertog, M.J.P. Gingras, Phys. Rev. Lett. 87, 067203 (2001). https://doi.org/10.1103/PhysRevLett.87.067203

  47. D. Pomaranski, L.R. Yaraskavitch, S. Meng, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, B.D. Gaulin, J.B. Kycia, Nat. Phys. 9, 353 (2013). https://doi.org/10.1038/NPHYS2591

  48. S.R. Giblin, M. Twengström, L. Bovo, M. Ruminy, M. Bartkowiak, P. Manuel, T. Fennell et al., Phys. Rev. Lett. 121, 067202 (2018). https://doi.org/10.1103/PhysRevLett.121.067202

  49. P.A. McClarty, O. Sikora, R. Moessner, K. Penc, F. Pollmann, N. Shannon, Phys. Rev. B 92, 094418 (2015). https://doi.org/10.1103/PhysRevB.92.094418

  50. P. Henelius, T. Lin, M. Enjalran, Z. Hao, J.G. Rau, J. Altosaar, F. Flicker, T. Yavors’kii, M.J.P. Gingras, Phys. Rev. B 93, 024402 (2016). https://doi.org/10.1103/PhysRevB.93.024402

  51. S.T. Bramwell, Phil. Trans. R. Soc. A 370, 5738 (2012). https://doi.org/10.1098/rsta.2011.0596

  52. S.T. Bramwell, B. Keimer, Nat. Mater. 13, 763 (2014). https://doi.org/10.1038/nmat4045

  53. T. Fennell, P.P. Deen, A.R. Wildes, K. Schmalzl, D. Prabhakaran, A.T. Boothroyd, R.J. Aldus, D.F. McMorrow, S.T. Bramwell, Science 326, 415 (2009). https://doi.org/10.1126/science.1177582

  54. S.T. Bramwell, Nat. Commun. 8, 2088 (2017). https://doi.org/10.1038/s41467-017-02102-1

  55. S.T. Bramwell, unpublished

    Google Scholar 

  56. T. Fennell, unpublished

    Google Scholar 

  57. C. Henley, Annu. Rev. Condens. Matter Phys. 1, 179 (2010). https://doi.org/10.1146/annurev-conmatphys-070909-104138

  58. L.J. Chang, Y. Su, Y.-J. Kao, Y.Z. Chou, R. Mittal, H. Schneider, T. Brueckel, G. Balakrishan, M.R. Lees, Phys. Rev. B 82, 172403 (2010). https://doi.org/10.1103/PhysRevB.82.172403

  59. J. Als-Nielsen, L.M. Holmes, H.J. Guggenheim, Phys. Rev. Lett. 32, 610 (1974). https://doi.org/10.1103/PhysRevLett.32.610

  60. A. Sen, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 110, 107202 (2013). https://doi.org/10.1103/PhysRevLett.110.107202

  61. R. Youngblood, J.D. Axe, Phys. Rev. B 17, 3639 (1978). https://doi.org/10.1103/PhysRevB.17.3639

  62. R. Youngblood, J.D. Axe, B.M. McCoy, Phys. Rev. B 21, 5212 (1980). https://doi.org/10.1103/PhysRevB.21.5212

  63. R.W. Youngblood, J.D. Axe, Phys. Rev. B 23, 232 (1981). https://doi.org/10.1103/PhysRevB.23.232

  64. M.P. Zinkin, M.J. Harris, T. Zeiske, Phys. Rev. B 56, 11786 (1997). https://doi.org/10.1103/PhysRevB.56.11786

  65. B. Canals, D.A. Garanin, Can. J. Phys. 79, 1323 (2001). https://doi.org/10.1139/p01-101

  66. D.A. Huse, W. Krauth, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 91, 167004 (2003). https://doi.org/10.1103/PhysRevLett.91.167004

  67. S.V. Isakov, K. Gregor, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 93, 167204 (2004). https://doi.org/10.1103/PhysRevLett.93.167204

  68. C.L. Henley, Phys. Rev. B 71, 014424 (2005). https://doi.org/10.1103/PhysRevB.71.014424

  69. A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry, Nature 399, 333 (1999). https://doi.org/10.1038/20619

  70. Y. Su, unpublished

    Google Scholar 

  71. H.W.J. Blöte, R.F. Wielinga, W.J. Huiskamp, Physica 43, 549 (1969). https://doi.org/10.1016/0031-8914(69)90187-6

  72. D.J.P. Morris, D.A. Tennant, S.A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K.C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, R.S. Perry, Science 326, 411 (2009). https://doi.org/10.1126/science.1178868

  73. B. Klemke, M. Meissner, P. Strehlow, K. Kiefer, S.A. Grigera, D.A. Tennant, J. Low. Temp. Phys. 163, 345 (2011). https://doi.org/10.1007/s10909-011-0348-y

  74. R. Higashinaka, H. Fukazawa, D. Yanagishima, Y. Maeno, J. Phys. Chem. Solids 63, 1043 (2002). https://doi.org/10.1016/S0022-3697(02)00065-3

  75. H. Kadowaki, N. Doi, Y. Aoki, Y. Tabata, T.J. Sato, J.W. Lynn, K. Matsuhira, Z. Hiroi, J. Phys. Soc. Jpn. 78, 103706 (2009). https://doi.org/10.1143/JPSJ.78.103706

  76. R. Higashinaka, H. Fukazawa, Y. Maeno, Phys. Rev. B 68, 014415 (2003). https://doi.org/10.1103/PhysRevB.68.014415

  77. Z. Hiroi, K. Matsuhira, S. Takagi, T. Tayama, T. Sakakibara, J. Phys. Soc. Jpn. 72, 411 (2003). https://doi.org/10.1143/JPSJ.72.411

  78. R. Higashinaka, H. Fukazawa, K. Deguchi, Y. Maeno, J. Phys. Soc. Jpn. 73, 2845 (2004). https://doi.org/10.1143/JPSJ.73.2845

  79. X. Ke, R.S. Freitas, B.G. Ueland, G.C. Lau, M.L. Dahlberg, R.J. Cava, R. Moessner, P. Schiffer, Phys. Rev. Lett. 99, 137203 (2007). https://doi.org/10.1103/PhysRevLett.99.137203

  80. V. Kaiser, J. Bloxsom, L. Bovo, S.T. Bramwell, P.C.W. Holdsworth, R. Moessner, Phys. Rev. B 98, 144413 (2018). https://doi.org/10.1103/PhysRevB.98.144413

  81. H.D. Zhou, S.T. Bramwell, J.G. Cheng, C.R. Wiebe, G. Li, L. Balicas, J.A. Bloxsom, H.J. Silverstein, J.S. Zhou, J.B. Goodenough, J.S. Gardner, Nat. Commun. 2, 478 (2011). https://doi.org/10.1038/ncomms1483

  82. H.D. Zhou, J.G. Cheng, A.M. Hallas, C.R. Wiebe, G. Li, L. Balicas, J.S. Zhou, J.B. Goodenough, J.S. Gardner, E.S. Choi, Phys. Rev. Lett. 108, 207206 (2012). https://doi.org/10.1103/PhysRevLett.108.207206

  83. S.T. Bramwell, M.N. Field, M.J. Harris, I.P. Parkin, J. Phys.: Condens. Matter 12, 483 (2000). https://doi.org/10.1088/0953-8984/12/4/308

  84. K. Matsuhira, Y. Hinatsu, T. Sakakibara, J. Phys.: Condens. Matter 13, L737 (2001). https://doi.org/10.1088/0953-8984/13/31/101

  85. J.A. Quilliam, L.R. Yaraskavitch, H.A. Dabkowska, B.D. Gaulin, J.B. Kycia, Phys. Rev. B 83, 094424 (2011). https://doi.org/10.1103/PhysRevB.83.094424

  86. J. Snyder, B. Ueland, A. Mizel, J.S. Slusky, H. Karunadasa, R.J. Cava, P. Schiffer, Phys. Rev. B 70, 184431 (2004). https://doi.org/10.1103/PhysRevB.70.184431

  87. J. Snyder, B.G. Ueland, J.S. Slusky, H. Karunadasa, R.J. Cava, P. Schiffer, Phys. Rev. B 69, 064414 (2004). https://doi.org/10.1103/PhysRevB.69.064414

  88. J. Snyder, B.G. Ueland, J.S. Slusky, H. Karunadasa, R.J. Cava, A. Mizel, P. Schiffer, Phys. Rev. Lett. 91, 107201 (2003). https://doi.org/10.1103/PhysRevLett.91.107201

  89. J. Snyder, J.S. Slusky, R.J. Cava, P. Schiffer, Phys. Rev. B 66, 064432 (2002). https://doi.org/10.1103/PhysRevB.66.064432

  90. J. Snyder, J.S. Slusky, R.J. Cava, P. Schiffer, Nature 413, 48 (2001). https://doi.org/10.1038/35092516

  91. K. Matsuhira, Y. Hinatsu, K. Tenya, T. Sakakibara, J. Phys.: Condens. Matter 12, L649 (2000). https://doi.org/10.1088/0953-8984/12/40/103

  92. K. Matsuhira, C. Paulsen, E. Lhotel, C. Sekine, Z. Hiroi, S. Takagi, J. Phys. Soc. Jpn. 80, 123711 (2011). https://doi.org/10.1143/JPSJ.80.123711

  93. L.R. Yaraskavitch, H.M. Revell, S. Meng, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, B.D. Gaulin, J.B. Kycia, Phys. Rev. B 85, 020410(R) (2012). https://doi.org/10.1103/PhysRevB.85.20410

  94. L. Bovo, J.A. Bloxsom, D. Prabhakaran, G. Aeppli, S.T. Bramwell, Nat. Commun. 4, 1535 (2013). https://doi.org/10.1038/ncomms2551

  95. M. Ruminy, S. Chi, S. Calder, T. Fennell, Phys. Rev. B 95, 060414(R) (2017). https://doi.org/10.1103/PhysRevB.95.060414

  96. L. Onsager, Ann. N. Y. Acad. Sci. 46, 241 (1945). https://doi.org/10.1111/j.1749-6632.1945.tb36170.x

  97. H. Takatsu, K. Goto, H. Otsuka, R. Higashinaka, K. Matsubayashi, Y. Uwatoko, H. Kadowaki, J. Phys. Soc. Jpn. 82, 104710 (2013). https://doi.org/10.7566/JPSJ.82.104710

  98. H.M. Revell, L.R. Yaraskavitch, J.D. Mason, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, B.D. Gaulin, P. Henelius, J.B. Kycia, Nat. Phys. 9, 34 (2012). https://doi.org/10.1038/nphys2466

  99. C. Castelnovo, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 104, 107201 (2010). https://doi.org/10.1103/PhysRevLett.104.107201

  100. C. Krey, S. Legl, S.R. Dunsiger, M. Meven, J.S. Gardner, J.M. Roper, C. Pfleiderer, Phys. Rev. Lett. 108, 257204 (2012). https://doi.org/10.1103/PhysRevLett.108.257204

  101. C. Paulsen, M.J. Jackson, E. Lhotel, B. Canals, D. Prabhakaran, K. Matsuhira, S.R. Giblin, S.T. Bramwell, Nat. Phys. 10, 135 (2014). https://doi.org/10.1038/nphys2847

  102. V. Kaiser, S.T. Bramwell, P.C.W. Holdsworth, R. Moessner, Nat. Mater. 12, 1033 (2013). https://doi.org/10.1038/nmat3729

  103. D.P. Mason, D.K. McIlroy, J. Chem. Soc., Faraday Trans. 2 74, 2019 (1978).https://doi.org/10.1039/F29787402019

  104. C. Paulsen, S.R. Giblin, E. Lhotel, D. Prabhakaran, G. Balakrishnan, K. Matsuhira, S.T. Bramwell, Nat. Phys. 12, 661 (2016). https://doi.org/10.1038/nphys3704

  105. S.R. Giblin, S.T. Bramwell, P.C.W. Holdsworth, D. Prabhakaran, I. Terry, Nat. Phys. 7, 252 (2011). https://doi.org/10.1038/NPHYS1896

  106. S.T. Bramwell, S.R. Giblin, S. Calder, R. Aldus, D. Prabhakaran, T. Fennell, Nature 461, 956 (2009). https://doi.org/10.1038/nature08500

  107. L.J. Chang, M.R. Lees, G. Balakrishnan, Y.J. Kao, A.D. Hillier, Sci. Rep. 3, 1881 (2013). https://doi.org/10.1038/srep01881

  108. S.R. Dunsiger, A.A. Aczel, C. Arguello, H. Dabkowska, A. Dabkowski, M.-H. Du, T. Goko, B. Javanparast, T. Lin, F.L. Ning, H.M.L. Noad, D.J. Singh, T.J. Williams, Y.J. Uemura, M.J.P. Gingras, G.M. Luke, Phys. Rev. Lett. 107, 207207 (2011). https://doi.org/10.1103/PhysRevLett.107.207207

  109. S.J. Blundell, Phys. Rev. Lett. 108, 147601 (2012). https://doi.org/10.1103/PhysRevLett.108.147601

  110. P. Quémerais, P. McClarty, R. Moessner, Phys. Rev. Lett. 109, 127601 (2012). https://doi.org/10.1103/PhysRevLett.109.127601

  111. J.A. Rodriguez, A. Yaouanc, B. Barbara, E. Pomjakushina, P. Quémerais, Z. Salman, Phys. Rev. B 87, 184427 (2013). https://doi.org/10.1103/PhysRevB.87.184427

  112. L. Nuccio, L. Schulz, A.J. Drew, J. Phys. D: Appl. Phys. 47, 473001 (2014). https://doi.org/10.1088/0022-3727/47/47/473001

  113. G. Sala, C. Castelnovo, R. Moessner, S.L. Sondhi, K. Kitagawa, M. Takigawa, R. Higashinaka, Y. Maeno, Phys. Rev. Lett. 108, 217203 (2012). https://doi.org/10.1103/PhysRevLett.108.217203

  114. F.R. Foronda, F. Lang, J.S. Möller, T. Lancaster, A.T. Boothroyd, F.L. Pratt, S.R. Giblin, D. Prabhakaran, S.J. Blundell, Phys. Rev. Lett. 114, 017602 (2015). https://doi.org/10.1103/PhysRevLett.114.017602

  115. J.P. Clancy, J.P.C. Ruff, S.R. Dunsiger, Y. Zhao, H.A. Dabkowska, J.S. Gardner, Y. Qiu, J.R.D. Copley, T. Jenkins, B.D. Gaulin, Phys. Rev. B 79, 014408 (2009). https://doi.org/10.1103/PhysRevB.79.014408

  116. J. Lago, S.J. Blundell, C. Baines, J. Phys.: Condens. Matter 19, 326210 (2007). https://doi.org/10.1088/0953-8984/19/32/326210

  117. C.P. Grams, M. Valldor, M. Garst, J. Hemberger, Nat. Commun. 5, 4853 (2014). https://doi.org/10.1038/ncomms5853

  118. E.R. Kassner, A.B. Eyvazov, B. Pichler, T.J.S. Munsie, H.A. Dabkowska, G.M. Luke, J.C.S. Davis, Proc. Natl. Acad. Sci. 112, 8549 (2015). https://doi.org/10.1073/pnas.1511006112

  119. A.V. Shtyk, M.V. Feigel’man, JETP Letters 92, 799 (2010). https://doi.org/10.1134/S0021364010240045

  120. H. Otsuka, H. Takatsu, K. Goto, H. Kadowaki, Phys. Rev. B 90, 144428 (2014). https://doi.org/10.1103/PhysRevB.90.144428

  121. K. Matsuhira, Z. Hiroi, T. Tayama, S. Takagi, T. Sakakibara, J. Phys.: Condens. Matter 14, L559 (2002). https://doi.org/10.1088/0953-8984/14/29/101

  122. A.S. Wills, R. Ballou, C. Lacroix, Phys. Rev. B 66, 144407 (2002). https://doi.org/10.1103/PhysRevB.66.144407

  123. A.J. Macdonald, P.C.W. Holdsworth, R.G. Melko, J. Phys.: Condens. Matter 23, 164208 (2011). https://doi.org/10.1088/0953-8984/23/16/164208

  124. R. Moessner, S.L. Sondhi, Phys. Rev. B 68, 064411 (2003). https://doi.org/10.1103/PhysRevB.68.064411

  125. Y. Tabata, H. Kadowaki, K. Matsuhira, Z. Hiroi, N. Aso, E. Ressouche, B. Fåk, Phys. Rev. Lett. 97, 257205 (2006). https://doi.org/10.1103/PhysRevLett.97.257205

  126. T. Fennell, S.T. Bramwell, D.F. Mcmorrow, P. Manuel, A.R. Wildes, Nat. Phys. 3, 566 (2007). https://doi.org/10.1038/nphys632

  127. S.V. Isakov, K.S. Raman, R. Moessner, S.L. Sondhi, Phys. Rev. B 70, 104418 (2004). https://doi.org/10.1103/PhysRevB.70.104418

  128. H. Aoki, T. Sakakibara, K. Matsuhira, Z. Hiroi, J. Phys. Soc. Jpn. 73, 2851 (2004). https://doi.org/10.1143/JPSJ.73.2851

  129. T. Sakakibara, T. Tayama, Z. Hiroi, K. Matsuhira, S. Takagi, Phys. Rev. Lett. 90, 207205 (2003). https://doi.org/10.1103/PhysRevLett.90.207205

  130. T. Sakakibara, T. Tayama, K. Matsuhira, S. Takagi, Z. Hiroi, J. Magn. Magn. Mater. 272, 1312 (2004). https://doi.org/10.1016/j.jmmm.2003.12.1215

  131. P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987). https://doi.org/10.1103/RevModPhys.59.1001

  132. M.J. Matthews, C. Castelnovo, R. Moessner, S.A. Grigera, D. Prabhakaran, P. Schiffer, Phys. Rev. B 86, 214419 (2012). https://doi.org/10.1103/PhysRevB.86.214419

  133. H. Takatsu, K. Goto, H. Otsuka, R. Higashinaka, K. Matsubayashi, Y. Uwatoko, H. Kadowaki, J. Phys. Soc. Jpn. 82, 073707 (2013). https://doi.org/10.7566/JPSJ.82.073707

  134. G.G. Simeoni, T. Bryk, F.A. Gorelli, M. Krisch, G. Ruocco, M. Santoro, T. Scopigno, Nat. Phys. 6, 503 (2010). https://doi.org/10.1038/nphys1683

  135. T. Fennell, O.A. Petrenko, B. Fåk, J.S. Gardner, S.T. Bramwell, B. Ouladdiaf, Phys. Rev. B 72, 224411 (2005). https://doi.org/10.1103/PhysRevB.72.224411

  136. D. Slobinsky, C. Castelnovo, R.A. Borzi, A.S. Gibbs, A.P. Mackenzie, R. Moessner, S.A. Grigera, Phys. Rev. Lett. 105, 267205 (2010). https://doi.org/10.1103/PhysRevLett.105.267205

  137. S. Erfanifam, S. Zherlitsyn, J. Wosnitza, R. Moessner, O.A. Petrenko, G. Balakrishnan, A.A. Zvyagin, Phys. Rev. B 84, 220404(R) (2011). https://doi.org/10.1103/PhysRevB.84.220404

  138. S. Erfanifam, S. Zherlitsyn, S. Yasin, Y. Skourski, J. Wosnitza, A.A. Zvyagin, P. McClarty, R. Moessner, G. Balakrishnan, O.A. Petrenko, Phys. Rev. B 90, 064409 (2014). https://doi.org/10.1103/PhysRevB.90.064409

  139. M.J. Jackson, E. Lhotel, S.R. Giblin, S.T. Bramwell, D. Prabhakaran, K. Matsuhira, Z. Hiroi, Q. Yu, C. Paulsen, Phys. Rev. B 90, 064427 (2014). https://doi.org/10.1103/PhysRevB.90.064427

  140. S. Mostame, C. Castelnovo, R. Moessner, S.L. Sondhi, Proc. Natl. Acad. Sci. 111, 640 (2014). https://doi.org/10.1073/pnas.1317631111

  141. G. Kolland, O. Breunig, M. Valldor, M. Hiertz, J. Frielingsdorf, T. Lorenz, Phys. Rev. B 86, 060402(R) (2012). https://doi.org/10.1103/PhysRevB.86.060402

  142. G. Kolland, M. Valldor, M. Hiertz, J. Frielingsdorf, T. Lorenz, Phys. Rev. B 88, 054406 (2013). https://doi.org/10.1103/PhysRevB.88.054406

  143. C. Fan, Z.Y. Zhao, H.D. Zhou, X.M. Wang, Q.J. Li, F.B. Zhang, X. Zhao, X.F. Sun, Phys. Rev. B 87, 144404 (2013). https://doi.org/10.1103/PhysRevB.87.144404

  144. W.H. Toews, S.S. Zhang, K.A. Ross, H.A. Dabkowska, B.D. Gaulin, R.W. Hill, Phys. Rev. Lett. 110, 217209 (2013). https://doi.org/10.1103/PhysRevLett.110.217209

  145. D.I. Khomskii, Nat. Commun. 3, 904 (2012). https://doi.org/10.1038/ncomms1904

  146. A. Sarkar, S. Mukhopadhyay, Phys. Rev. B 90, 165129 (2014). https://doi.org/10.1103/PhysRevB.90.165129

  147. M. Saito, R. Higashinaka, Y. Maeno, Phys. Rev. B 72, 144422 (2005). https://doi.org/10.1103/PhysRevB.72.144422

  148. D. Liu, L. Lin, M.F. Liu, Z.B. Yan, S. Dong, J.M. Liu, J. Appl. Phys. 113, 17D901 (2013). https://doi.org/10.1063/1.4793704

  149. M. Bonitz, Nat. Phys. 7, 192 (2011). https://doi.org/10.1038/nphys1935

  150. M. Yamada, R. Kulsrud, H. Ji, Rev. Mod. Phys. 82, 603 (2010). https://doi.org/10.1103/RevModPhys.82.603

  151. J.B. Zirker, The Magnetic Universe (Johns Hopkins University Press, Baltimore, 2009). ISBN 9780801893025

    Google Scholar 

  152. E.Y. Vedmedenko, Phys. Rev. Lett. 116, 077202 (2016). https://doi.org/10.1103/PhysRevLett.116.077202

  153. M.E. Zhitomirsky, A.L. Chernyshev, Rev. Mod. Phys. 85, 219 (2013). https://doi.org/10.1103/RevModPhys.85.219

  154. J. Lago, I. Živković, B.Z. Malkin, J. Rodriguez Fernandez, P. Ghigna, P. Dalmas de Réotier, A. Yaouanc, T. Rojo, Phys. Rev. Lett. 104, 247203 (2010). https://doi.org/10.1103/PhysRevLett.104.247203

  155. O. Benton, O. Sikora, N. Shannon, Phys. Rev. B 86, 075154 (2012). https://doi.org/10.1103/PhysRevB.86.075154

  156. B. Tomasello, C. Castelnovo, R. Moessner, J. Quintanilla, Phys. Rev. B 92, 155120 (2015). https://doi.org/10.1103/PhysRevB.92.155120

  157. J.G. Rau, M.J.P. Gingras, Phys. Rev. B 92, 144417 (2015). https://doi.org/10.1103/PhysRevB.92.144417

  158. M.J. Harris, S.T. Bramwell, P.C.W. Holdsworth, J.D.M. Champion, Phys. Rev. Lett. 81, 4496 (1998). https://doi.org/10.1103/PhysRevLett.81.4496

  159. M.J.P. Gingras, P.A. McClarty, Rep. Prog. Phys. 77, 056501 (2014). https://doi.org/10.1088/0034-4885/77/5/056501

  160. G. Sala, M.J. Gutmann, D. Prabhakaran, D. Pomaranski, C. Mitchelitis, J.B. Kycia, D.G. Porter, C. Castelnovo, J.P. Goff, Nat. Mater. 13(5), 488 (2014). https://doi.org/10.1038/nmat3924

  161. S. Balibar, Séminaire Poincaré 1, 11 (2003). https://doi.org/10.1007/978-3-0348-7932-3_2

  162. F. London, Nature 141, 643 (1938). https://doi.org/10.1038/141643a0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven T. Bramwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bramwell, S.T., Fennell, T. (2021). Experimental Observation of Magnetic Monopoles in Spin Ice. In: Udagawa, M., Jaubert, L. (eds) Spin Ice. Springer Series in Solid-State Sciences, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-030-70860-3_8

Download citation

Publish with us

Policies and ethics