Skip to main content

Dynamics

  • Chapter
  • First Online:
Spin Ice

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 197))

Abstract

The dynamics of typical spin ice compound Dy\(_2\)Ti\(_2\)O\(_7\) investigated by mainly AC susceptibility and DC magnetization are represented. In addition, considering the results of \(\mu \)SR and neutron scattering measurements, the common features in spin dynamics are discussed in comparison with the other spin in ice compounds. The spin dynamics of spin ice show a quite unique behavior. The temperature dependence of relaxation time \(\tau (T)\) can be roughly described by three regimes. (I) Above 10 K, the temperature dependence of the relaxation time \(\tau (T)\) is effectively explained on the basis of the Arrhenius law with an energy barrier \(E_\mathrm{B}\) = 200–300 K. (II) In the temperature range of 2–10 K, \(\tau (T)\) is almost constant. (III) Below 2 K, \(\tau (T)\) increases again, and reaches \(\sim \)1 s at \(\sim \)0.7 K. Spin ice state is formed. The dynamics above 10 K is due to single ion process and mixing with excited states; \(E_\mathrm{B}\) corresponds to the energy of the excited CEF levels which results in the Ising-like anisotropy. At low temperature below 10 K, the dynamics comes from the creation or annihilation of magnetic monopoles, and their diffusion. In the narrow temperature range \(\sim \)0.5–1 K, the thermal activated dynamics is observed; the energy barrier of \(\sim \)9 K is obtained for Dy\(_2\)Ti\(_2\)O\(_7\). The results indicate that a description taking into account the long range Coulomb interaction between the monopoles is needed to explain the dynamics below 1 K. Below 0.5 K, \(\tau (T)\) show a clear deviation from the thermal activated dynamics toward temperature independent relaxation. Furthermore, recent topics on the very slow spin dynamics at very low temperature are also represented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S.T. Bramwell, M.J.P. Gingras, Science 294, 1495 (2001). https://doi.org/10.1126/science.1064761

  2. P. Debye, The collected papers of Peter J. W. Debye, (Interscience Pub., New York, 1954)

    Google Scholar 

  3. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941). https://doi.org/10.1063/1.1750906

  4. C. Dekker, A.F. Arts, H.W. de Wijn, A.J. van Duyneveldt, J. Mydosh, Phys. Rev. B 40, 11243 (1989). https://doi.org/10.1103/PhysRevB.40.11243

  5. D.W. Davidson, R.H. Cole, J. Chem. Phys. 18, 1417 (1950). https://doi.org/10.1063/1.1747496; J. Chem. Phys. 19, 1484 (1951). https://doi.org/10.1063/1.1748105

  6. K. Matsuhira, Y. Hinatsu, T. Sakakibara, J. Phys. Condens. Matter 13, L737 (2001). https://doi.org/10.1088/0953-8984/13/31/101

  7. J. Snyder, J.S. Slusky, R.J. Cava, P. Schiffer, Nature (London) 413, 48 (2001). https://doi.org/10.1038/35092516

  8. J. Lago, S.J. Blundell, C. Baines, J. Phys.: Condens. Matter 19, 326210 (2007). https://doi.org/10.1088/0953-8984/19/32/326210

  9. G. Ehlers, A.L. Cornelius, M. Orendac, M. Kjnakova, T. Fennell, S.T. Bramwell, J.S. Gardner, J. Phys.: Condens. Matter 15, L9 (2003). https://doi.org/10.1088/0953-8984/15/2/102

  10. J.P. Clancy, J.P.C. Ruff, S.R. Dunsiger, Y. Zhao, H.A. Dabkowska, J.S. Gardner, Y. Qiu, J.R.D. Copley, T. Jenkins, B.D. Gaulin, Phys. Rev. B 79, 014408 (2009). https://doi.org/10.1103/PhysRevB.79.014408

  11. K. Matsuhira, M. Wakeshima, Y. Hinatsu, C. Sekine, C. Paulsen, T. Sakakibara, S. Takagi, J. Phys.: Conf. Ser. 320, 012050 (2011). https://doi.org/10.1088/1742-6596/320/1/012050

  12. M.A. Subramanian, G. Aravamudan, G.V. Subba Rao, Prog. Solid State Chem. 15, 55 (1983). https://doi.org/10.1016/0079-6786(83)90001-8

  13. C. Castelnovo, R. Moessner, S.L. Sondhi, Nature (London) 451, 42 (2008). https://doi.org/10.1038/nature06433

  14. L.D.C. Jaubert, P.C.W. Holdsworth, Nat. Phys. 5, 258 (2009). https://doi.org/10.1038/NPHYS1227; J. Phys.: Condens. Matter 23, 164222 (2011). https://doi.org/10.1088/0953-8984/23/16/164222

  15. J. Snyder, B.G. Ueland, J.S. Slusky, H. Karunadasa, R.J. Cava, P. Schiffer, Phys. Rev. B 69, 064414 (2004). https://doi.org/10.1103/PhysRevB.69.064414

  16. K. Matsuhira, Y. Hinatsu, K. Tenya, T. Sakakibara, J. Phys.: Condens. Matter 12, L649 (2000). https://doi.org/10.1088/0953-8984/12/40/103

  17. T. Sakakibara, H. Mitamura, T. Tayama, H. Amitsuka, Jpn. J. Appl. Phys. 33, 5067 (1994). https://doi.org/10.1143/JJAP.33.5067

  18. T. Sakakibara, private communications

    Google Scholar 

  19. K. Matsuhira, C. Paulsen, E. Lhotel, C. Sekine, Z. Hiroi, S. Takagi, J. Phys. Soc. Jpn. 80, 123711 (2011). https://doi.org/10.1143/JPSJ.80.123711

  20. R.G. Melko, B.C. den Hertog, M.J.P. Gingras, Phys. Rev. Lett. 87, 067203 (2001). https://doi.org/10.1103/PhysRevLett.87.067203

  21. P.A. McClarty, O. Sikora, R. Moessner, K. Penc, F. Pollmann, N. Shannon, Phys. Rev. B 92, 094418 (2015). https://doi.org/10.1103/PhysRevB.92.094418

  22. S. Onoda, Y. Tanaka, Phys. Rev. Lett. 105, 047201 (2010). https://doi.org/10.1103/PhysRevLett.105.047201; Phys. Rev. B 83, 094411 (2011). https://doi.org/10.1103/PhysRevB.83.094411

  23. H.M. Revell, L.R. Yaraskavitch, J.D. Mason, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, P. Henelius, J.B. Kycia, Nat. Phys. 9, 34 (2013). https://doi.org/10.1038/nphys2466

  24. K.A. Loss, Th Proffen, H.A. Dabkowska, J.A. Quilliam, L.R. Yaraskavitch, J.B. Kycia, B.D. Gaulin, Phys. Rev. B 86, 174424 (2012). https://doi.org/10.1103/PhysRevB.86.174424

  25. J.A. Quilliam, L.R. Yaraskavitch, H.A. Dabkowska, B.D. Gaulin, J.B. Kycia, Phys. Rev. B 83, 094424 (2011). https://doi.org/10.1103/PhysRevB.83.094424

  26. C. Paulsen, M.J. Jackson, E. Lhotel, B. Canals, D. Prabhakaran, K. Matsuhira, S.R. Giblin, S.T. Bramwell, Nat. Phys. 10, 135 (2014). https://doi.org/10.1038/nphys2847

  27. I.A. Ryzhkin, J. Exp. Theor. Phys. 101, 481 (2005). https://doi.org/10.1134/1.2103216

  28. D. Pomaranski, L.R. Yaraskavitch, S. Meng, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, B.D. Gaulin, J.B. Kycia, Nat. Phys. 9, 353 (2013). https://doi.org/10.1038/NPHYS2591

  29. A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry, Nature 399, 333 (1999). https://doi.org/10.1038/20619

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Matsuhira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsuhira, K. (2021). Dynamics. In: Udagawa, M., Jaubert, L. (eds) Spin Ice. Springer Series in Solid-State Sciences, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-030-70860-3_4

Download citation

Publish with us

Policies and ethics