Skip to main content

Experimental Studies of Artificial Spin Ice

  • Chapter
  • First Online:
Spin Ice

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 197))

  • 1287 Accesses

Abstract

Artificial spin ices were originally introduced as analogs of the pyrochlore spin ices, but have since become a much richer field. The original attractions of building nanotechnological analogs of the pyrochlores were threefold: to allow room temperature studies of geometrical frustration; to provide model statistical mechanical systems where all the relevant parameters in an experiment can be tuned by design; and to be able to examine the exact microstate of those systems using advanced magnetic microscopy methods. From this beginning the field has grown to encompass studies of the effects of quenched disorder, thermally activated dynamics, microwave frequency responses, magnetotransport properties, and the development of lattice geometries–with related emergent physics—that have no analog in naturally-occurring crystalline systems. The field also offers the prospect of contributing to novel magnetic logic devices, since the arrays of nanoislands that form artificial spin ices are similar in many respects to those that are used in the development of magnetic quantum cellular automata. In this chapter, I review the experimental aspects of this story, complementing the theoretical chapter, Chap. 15, by Gia-Wei Chern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Bartels-Rausch, V. Bergeron, J.H.E. Cartwright, R. Escribano, J.L. Finney, H. Grothe, P.J. Gutiérrez, J. Haapala, W.F. Kuhs, J.B.C. Pettersson, S.D. Price, C.I. Sainz-Díaz, D.J. Stokes, G. Strazzulla, E.S. Thomson, H. Trinks, N. Uras-Aytemiz, Rev. Mod. Phys. 84, 885 (2012). https://doi.org/10.1103/RevModPhys.84.885

  2. L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935). https://doi.org/10.1021/ja01315a102

  3. D.L. Stein, C.M. Newman, Spin Glasses and Complexity (Princeton University Press, Princeton, NJ, 2013). ISBN 9780691147338

    Google Scholar 

  4. S.T. Bramwell, M.J.P. Gingras, Science 294, 1495 (2001). https://doi.org/10.1126/science.1064761

  5. C. Nisoli, R. Moessner, P. Schiffer, Rev. Mod. Phys. 85, 1473 (2013). https://doi.org/10.1103/RevModPhys.85.1473

  6. L.J. Heyderman, R.L. Stamps, J. Phys.: Cond. Matt. 25, 363201 (2013). https://doi.org/10.1088/0953-8984/25/36/363201

  7. J. Cumings, L.J. Heyderman, C.H. Marrows, R.L. Stamps, New J. Phys. 16, 075016 (2014). https://doi.org/10.1088/1367-2630/16/7/075016

  8. R.F. Wang, C. Nisoli, R.S. Freitas, J. Li, W. McConville, B.J. Cooley, M.S. Lund, N. Samarth, C. Leighton, V.H. Crespi, P. Schiffer, Nature 439, 303 (2006). https://doi.org/10.1038/nature04447

  9. J.D. Bernal, R.H. Fowler, J. Chem. Phys. 1, 515 (1933). https://doi.org/10.1063/1.1749327

  10. A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry, Nature 399, 333 (1999). https://doi.org/10.1038/20619

  11. F. Wu, Phys. Rev. Lett. 18, 605 (1967). https://doi.org/10.1103/PhysRevLett.18.605

  12. E. Lieb, Phys. Rev. Lett. 18, 692 (1967). https://doi.org/10.1103/PhysRevLett.18.692

  13. J.C. Slater, J. Chem. Phys. 9, 16 (1941). https://doi.org/10.1063/1.1750821

  14. E.C. Stoner, E.P. Wohlfarth, Phil. Trans. R. Soc. Lond. A 240, 599 (1948). https://doi.org/10.1098/rsta.1948.0007

  15. J.P. Morgan, A. Stein, S. Langridge, C.H. Marrows, Nature Phys. 7, 75 (2011). https://doi.org/10.1038/nphys1853

  16. A.S. Wills, R. Ballou, C. Lacroix, Phys. Rev. B 66, 144407 (2002). https://doi.org/10.1103/PhysRevB.66.144407

  17. K. Matsuhira, Z. Hiroi, T. Tayama, S. Takagi, T. Sakakibara, J. Phys.: Cond. Matt. 14, L559 (2002). https://doi.org/10.1088/0953-8984/14/29/101

  18. M. Tanaka, E. Saitoh, H. Miyajima, T. Yamaoka, Y. Iye, J. Appl. Phys. 97, 10J710 (2005). https://doi.org/10.1063/1.1854572

  19. E. Mengotti, L. Heyderman, A. Rodríguez, A. Bisig, L. Le Guyader, F. Nolting, H. Braun, Phys. Rev. B 78, 144402 (2008). https://doi.org/10.1103/PhysRevB.78.144402

  20. J.I. Martín, J. Nogués, K. Liu, J.L. Vicente, I.K. Schuller, J. Magn. Magn. Mater. 256, 449 (2003). https://doi.org/10.1016/S0304-8853(02)00898-3

  21. S.A. Daunheimer, O. Petrova, O. Tchernyshyov, J. Cumings, Phys. Rev. Lett. 107, 167201 (2011). https://doi.org/10.1103/PhysRevLett.107.167201

  22. C. Nisoli, New J. Phys. 14, 035017 (2012). https://doi.org/10.1088/1367-2630/14/3/035017

  23. K.K. Kohli, A.L. Balk, J. Li, S. Zhang, I. Gilbert, P.E. Lammert, V.H. Crespi, P. Schiffer, N. Samarth, Phys. Rev. B 84, 180412 (2011). https://doi.org/10.1103/PhysRevB.84.180412

  24. A. Westphalen, A. Schumann, A. Remhof, H. Zabel, M. Karolak, B. Baxevanis, E. Vedmedenko, T. Last, U. Kunze, T. Eimüller, Phys. Rev. B. 77, 174407 (2008). https://doi.org/10.1103/PhysRevB.77.174407

  25. V. Kapaklis, U.B. Arnalds, A. Harman-Clarke, E.T. Papaioannou, M. Karimipour, P. Korelis, A. Taroni, P.C.W. Holdsworth, S.T. Bramwell, B. Hjörvarsson, New J. Phys. 14, 035009 (2012). https://doi.org/10.1088/1367-2630/14/3/035009

  26. M. Tanaka, E. Saitoh, H. Miyajima, T. Yamaoka, Y. Iye, Phys. Rev. B 73, 052411 (2006). https://doi.org/10.1103/PhysRevB.73.052411

  27. B.L. Le, D.W. Rench, R. Misra, L. O’Brien, C. Leighton, N. Samarth, P. Schiffer, New J. Phys. 17, 023047 (2015). https://doi.org/10.1088/1367-2630/17/2/023047

  28. J.P. Morgan, C.J. Kinane, T.R. Charlton, A. Stein, C. Sánchez-Hanke, D.A. Arena, S. Langridge, C.H. Marrows, AIP Advances 2, 022163 (2012). https://doi.org/10.1063/1.4732147

  29. J. Perron, L. Anghinolfi, B. Tudu, N. Jaouen, J.M. Tonnerre, M. Sacchi, F. Nolting, J. Lüning, L.J. Heyderman, Phys. Rev. B 88, 214424 (2013). https://doi.org/10.1103/PhysRevB.88.214424

  30. J. Sklenar, V.S. Bhat, L.E. DeLong, J.B. Ketterson, J. Appl. Phys. 113, 17B530 (2013). https://doi.org/10.1063/1.4800740

  31. S. Gliga, A. Kákay, R. Hertel, O.G. Heinonen, Phys. Rev. Lett. 110, 117205 (2013). https://doi.org/10.1103/PhysRevLett.110.117205

  32. S. Ladak, D.E. Read, G.K. Perkins, L.F. Cohen, W.R. Branford, Nat. Phys. 6, 359 (2010). https://doi.org/10.1038/nphys1628

  33. A. Schumann, B. Sothmann, P. Szary, H. Zabel, Appl. Phys. Lett. 97, 022509 (2010). https://doi.org/10.1063/1.3463482

    Article  ADS  Google Scholar 

  34. P. Lammert, X. Ke, J. Li, C. Nisoli, D. Garand, V. Crespi, P. Schiffer, Nat. Phys. 6, 786 (2010). https://doi.org/10.1038/nphys1728

    Article  Google Scholar 

  35. C. Nisoli, J. Li, X. Ke, D. Garand, P. Schiffer, V.H. Crespi, Phys. Rev. Lett. 105, 047205 (2010). https://doi.org/10.1103/PhysRevLett.105.047205

    Article  ADS  Google Scholar 

  36. J.P. Morgan, A. Stein, S. Langridge, C.H. Marrows, New J. Phys. 13, 105002 (2011). https://doi.org/10.1088/1367-2630/13/10/105002

    Article  ADS  Google Scholar 

  37. J.M. Porro, A. Bedoya-Pinto, A. Berger, P. Vavassori, New J. Phys. 15, 055012 (2013). https://doi.org/10.1088/1367-2630/15/5/055012

    Article  ADS  Google Scholar 

  38. S. Zhang, I. Gilbert, C. Nisoli, G.W. Chern, M.J. Erickson, L. O’Brien, C. Leighton, P.E. Lammert, V.H. Crespi, P. Schiffer, Nature 500, 553 (2013). https://doi.org/10.1038/nature12399

    Article  ADS  Google Scholar 

  39. I. Gilbert, G.W. Chern, S. Zhang, L. O’Brien, B. Fore, C. Nisoli, P. Schiffer, Nat. Phys. 10, 670 (2014). https://doi.org/10.1038/nphys3037

    Article  Google Scholar 

  40. Y. Qi, T. Brintlinger, J. Cumings, Phys. Rev. B 77, 094418 (2008). https://doi.org/10.1103/PhysRevB.77.094418

    Article  ADS  Google Scholar 

  41. C. Phatak, M. Pan, A.K. Petford-Long, S. Hong, M. De Graef, New J. Phys. 14, 075028 (2012). https://doi.org/10.1088/1367-2630/14/7/075028

    Article  ADS  Google Scholar 

  42. S.D. Pollard, V. Volkov, Y. Zhu, Phys. Rev. B 85, 180402 (2012). https://doi.org/10.1103/PhysRevB.85.180402

    Article  ADS  Google Scholar 

  43. Y. Shen, O. Petrova, P. Mellado, S. Daunheimer, J. Cumings, O. Tchernyshyov, New J. Phys. 14, 035022 (2012). https://doi.org/10.1088/1367-2630/14/3/035022

    Article  ADS  Google Scholar 

  44. C. Phatak, A.K. Petford-Long, O. Heinonen, M. Tanase, M. De Graef, Phys. Rev. B 83, 174431 (2011). https://doi.org/10.1103/PhysRevB.83.174431

    Article  ADS  Google Scholar 

  45. E. Mengotti, L.J. Heyderman, A. Fraile Rodríguez, F. Nolting, R.V. Hügli, H.B. Braun, Nat. Phys. 7, 68 (2011) https://doi.org/10.1038/nphys1794

  46. N. Rougemaille, F. Montaigne, B. Canals, A. Duluard, D. Lacour, M. Hehn, R. Belkhou, O. Fruchart, S. El Moussaoui, A. Bendounan, F. Maccherozzi, Phys. Rev. Lett. 106, 057209 (2011). https://doi.org/10.1103/PhysRevLett.106.057209

    Article  ADS  Google Scholar 

  47. N. Rougemaille, F. Montaigne, B. Canals, M. Hehn, H. Riahi, D. Lacour, J.C. Toussaint, New J. Phys. 15, 035026 (2013). https://doi.org/10.1088/1367-2630/15/3/035026

    Article  ADS  Google Scholar 

  48. A. Pushp, T. Phung, C. Rettner, B.P. Hughes, S.H. Yang, L. Thomas, S.S.P. Parkin, Nat. Phys. 9, 505 (2013). https://doi.org/10.1038/nphys2669

    Article  Google Scholar 

  49. F. Montaigne, D. Lacour, I.A. Chioar, N. Rougemaille, D. Louis, S.M. Murtry, H. Riahi, B.S. Burgos, T.O. Menteş, A. Locatelli, B. Canals, M. Hehn, Sci. Rep. 4, 5702 (2014). https://doi.org/10.1038/srep05702

    Article  ADS  Google Scholar 

  50. A. Farhan, P.M. Derlet, A. Kleibert, A. Balan, R.V. Chopdekar, M. Wyss, L. Anghinolfi, F. Nolting, L.J. Heyderman, Nat. Phys. 9, 375 (2013). https://doi.org/10.1038/NPHYS2613

    Article  Google Scholar 

  51. A. Farhan, P.M. Derlet, A. Kleibert, A. Balan, R.V. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, L.J. Heyderman, Phys. Rev. Lett. 111, 057204 (2013). https://doi.org/10.1103/PhysRevLett.111.057204

    Article  ADS  Google Scholar 

  52. V. Kapaklis, U.B. Arnalds, A. Farhan, R.V. Chopdekar, A. Balan, A. Scholl, L.J. Heyderman, B. Hjörvarsson, Nat. Nanotechnol. 9, 514 (2014). https://doi.org/10.1038/NNANO.2014.104

    Article  ADS  Google Scholar 

  53. Morley et al., Sci Rep. 9, 15989 (2019). https://doi.org/10.1038/s41598-019-52460-7

  54. S. Ladak, S.K. Walton, K. Zeissler, T. Tyliszczak, D.E. Read, W.R. Branford, L.F. Cohen, New J. Phys. 14, 045010 (2012). https://doi.org/10.1088/1367-2630/14/4/045010

    Article  ADS  Google Scholar 

  55. K. Zeissler, S.K. Walton, S. Ladak, D.E. Read, T. Tyliszczak, L.F. Cohen, W.R. Branford, Sci. Rep. 3, 1252 (2013). https://doi.org/10.1038/srep01252

    Article  ADS  Google Scholar 

  56. S.K. Walton, K. Zeissler, D.M. Burn, S. Ladak, D.E. Read, T. Tyliszczak, L.F. Cohen, W.R. Branford, New J. Phys. 17, 013054 (2015). https://doi.org/10.1088/1367-2630/17/1/013054

    Article  ADS  Google Scholar 

  57. C. Castelnovo, R. Moessner, S.L. Sondhi, Nature 451, 42 (2008). https://doi.org/10.1038/nature06433

    Article  ADS  Google Scholar 

  58. P.A.M. Dirac, Proc. Roy. Soc. London A 133, 60 (1931). https://doi.org/10.1098/rspa.1931.0130

    Article  ADS  Google Scholar 

  59. T. Fennell, P.P. Deen, A.R. Wildes, K. Schmalzl, D. Prabhakaran, A.T. Boothroyd, R.J. Aldus, D.F. McMorrow, S.T. Bramwell, Science 326, 415 (2009). https://doi.org/10.1126/science.1177582

    Article  ADS  Google Scholar 

  60. D.J.P. Morris, D.A. Tennant, S.A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K.C. Rule, J.U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, R.S. Perry, Science 326, 411 (2009). https://doi.org/10.1126/science.1178868

    Article  ADS  Google Scholar 

  61. H. Kadowaki, N. Doi, Y. Aoki, Y. Tabata, T.J. Sato, J.W. Lynn, K. Matsuhira, Z. Hiroi, J. Phys. Soc. Jpn. 78, 103706 (2009). https://doi.org/10.1143/JPSJ.78.103706

  62. S.T. Bramwell, S.R. Giblin, S. Calder, R. Aldus, D. Prabhakaran, T. Fennell, Nature 461, 956 (2009). https://doi.org/10.1038/nature08500

  63. S.R. Giblin, S.T. Bramwell, P.C.W. Holdsworth, D. Prabhakaran, I. Terry, Nat. Phys. 7, 252 (2011). https://doi.org/10.1038/NPHYS1896

  64. G. Möller, R. Moessner, Phys. Rev. B 80, 140409(R) (2009). https://doi.org/10.1103/PhysRevB.80.140409

  65. R.C. Silva, R.J.C. Lopes, L.A.S. Mól, W.A. Moura-Melo, G.M. Wysin, A.R. Pereira, Phys. Rev. B 87, 014414 (2013). https://doi.org/10.1103/PhysRevB.87.014414

  66. Y. Nambu, Phys. Rev. D 10, 4262 (1974). https://doi.org/10.4262

    Google Scholar 

  67. J. Li, X. Ke, S. Zhang, D. Garand, C. Nisoli, P. Lammert, V.H. Crespi, P. Schiffer, Phys. Rev. B 81, 092406 (2010). https://doi.org/10.1103/PhysRevB.81.092406

  68. S. Zhang, J. Li, I. Gilbert, J. Bartell, M.J. Erickson, Y. Pan, P.E. Lammert, C. Nisoli, K.K. Kohli, R. Misra, V.H. Crespi, N. Samarth, C. Leighton, P. Schiffer, Phys. Rev. Lett. 109, 087201 (2012). https://doi.org/10.1103/PhysRevLett.109.087201

  69. V.S. Bhat, J. Sklenar, B. Farmer, J. Woods, J.T. Hastings, S.J. Lee, J.B. Ketterson, L.E. De Long, Phys. Rev. Lett. 111, 077201 (2013). https://doi.org/10.1103/PhysRevLett.111.077201

  70. D. Shi et al., Nat. Phys. 14, 309 (2018). https://doi.org/10.1038/s41567-017-0009-4

  71. E. Mengotti, L.J. Heyderman, A. Bisig, A. Fraile Rodraguez, L. Le Guyader, F. Nolting, H.B. Braun, J. Appl. Phys. 105, 113113 (2009) https://doi.org/10.1063/1.3133202

  72. M.J. Morrison, T.R. Nelson, C. Nisoli, New J. Phys. 15, 045009 (2013). https://doi.org/10.1088/1367-2630/15/4/045009

    Article  ADS  Google Scholar 

  73. G.W. Chern, M.J. Morrison, C. Nisoli, Phys. Rev. Lett. 111, 177201 (2013). https://doi.org/10.1103/PhysRevLett.111.177201

    Article  ADS  Google Scholar 

  74. G.W. Chern, P. Mellado, EPL (Europhysics Letters) 114, 37004 (2016). https://doi.org/10.1103/PhysRevLett.102.237004

    Article  ADS  Google Scholar 

  75. A. Farhan, A. Scholl, C.F. Petersen, L. Anghinolfi, C. Wuth, S. Dhuey, R.V. Chopdekar, P. Mellado, M.J. Alava, S. van Dijken, Nat. Commun. 7, 12635 (2016). https://doi.org/10.1038/ncomms12635

    Article  ADS  Google Scholar 

  76. J.A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor & Francis. London (1993). https://doi.org/10.1201/9781482295191

    Article  Google Scholar 

  77. Z. Islam, I.R. Fisher, J. Zarestky, P.C. Canfield, C. Stassis, A.I. Goldman, Phys. Rev. B 57, R11047 (1998). https://doi.org/10.1103/PhysRevB.57.R11047

    Article  ADS  Google Scholar 

  78. M.A. Chernikov, A. Bernasconi, C. Beeli, A. Schilling, H.R. Ott, Phys. Rev. B 48, 3058 (1993). https://doi.org/10.1103/PhysRevB.48.3058

    Article  ADS  Google Scholar 

  79. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984). https://doi.org/10.1103/PhysRevLett.53.1951

    Article  ADS  Google Scholar 

  80. T.J. Sato, H. Takakura, A.P. Tsai, K. Shibata, K. Ohoyama, K.H. Andersen, Phys. Rev. B 61, 476 (2000). https://doi.org/10.1103/PhysRevB.61.476

    Article  ADS  Google Scholar 

  81. R. Penrose, Bull. Inst. Math. & Appl. 10, 266 (1974)

    Google Scholar 

  82. E.Y. Vedmedenko, H.P. Oepen, J. Kirschner, Phys. Rev. Lett. 90, 137203 (2003). https://doi.org/10.1103/PhysRevLett.90.137203

    Article  ADS  Google Scholar 

  83. E.Y. Vedmedenko, U. Grimm, R. Wiesendanger, Phil. Mag. 86, 733 (2006). https://doi.org/10.1080/14786430500363569

    Article  ADS  Google Scholar 

  84. Shi et al., Nat. Phys. 14, 309–314 (2018). https://doi.org/10.1038/s41567-017-0009-4

  85. J. Li, S. Zhang, J. Bartell, C. Nisoli, X. Ke, P.E. Lammert, V.H. Crespi, P. Schiffer, Phys. Rev. B 82, 134407 (2010). https://doi.org/10.1103/PhysRevB.82.134407

    Article  ADS  Google Scholar 

  86. H.M. Jaeger, S.R. Nagel, Science 255, 1523 (1992). https://doi.org/10.1126/science.255.5051.1523

    Article  ADS  Google Scholar 

  87. G. D’Anna, P. Mayor, A. Barrat, V. Loreto, F. Nori, Nature 424, 909 (2003). https://doi.org/10.1038/nature01867

    Article  ADS  Google Scholar 

  88. R.F. Wang, C. Nisoli, R.S. Freitas, J. Li, W. McConville, B.J. Cooley, M.S. Lund, N. Samarth, C. Leighton, V.H. Crespi, P. Schiffer, J. Appl. Phys. 101, 09J104 (2007). https://doi.org/10.1063/1.2712528

    Article  Google Scholar 

  89. C. Nisoli, R. Wang, J. Li, W.F. McConville, P.E. Lammert, P. Schiffer, V.H. Crespi, Phys. Rev. Lett. 98, 217103 (2007). https://doi.org/10.1103/PhysRevLett.98.217103

    Article  ADS  Google Scholar 

  90. X. Ke, J. Li, C. Nisoli, P.E. Lammert, W. McConville, R.F. Wang, V.H. Crespi, P. Schiffer, Phys. Rev. Lett. 101, 037205 (2008). https://doi.org/10.1103/PhysRevLett.101.037205

    Article  ADS  Google Scholar 

  91. J.P. Morgan, A. Bellew, A. Stein, S. Langridge, C.H. Marrows, Front. Phys. 1, 28 (2013). https://doi.org/10.3389/fphy.2013.00028

    Article  Google Scholar 

  92. Z. Budrikis, P. Politi, R.L. Stamps, Phys. Rev. Lett. 105, 017201 (2010). https://doi.org/10.1103/PhysRevLett.105.017201

    Article  ADS  Google Scholar 

  93. Z. Budrikis, J.P. Morgan, J. Akerman, A. Stein, P. Politi, S. Langridge, C.H. Marrows, R.L. Stamps, Phys. Rev. Lett. 109, 037203 (2012). https://doi.org/10.1103/PhysRevLett.109.037203

    Article  ADS  Google Scholar 

  94. P.E. Lammert, X. Ke, J. Li, C. Nisoli, D.M. Garand, V.H. Crespi, P. Schiffer, Nat. Phys. 6, 786 (2010). https://doi.org/10.1038/nphys1728

    Article  Google Scholar 

  95. S.J. Greaves, H. Muraoka, J. Appl. Phys. 112, 043909 (2012). https://doi.org/10.1063/1.4747910

    Article  ADS  Google Scholar 

  96. Z. Budrikis, K.L. Livesey, J.P. Morgan, J. Akerman, A. Stein, S. Langridge, C.H. Marrows, R.L. Stamps, New J. Phys. 14, 035014 (2012). https://doi.org/10.1088/1367-2630/14/3/035014

    Article  ADS  Google Scholar 

  97. J.P. Morgan, J. Akerman, A. Stein, C. Phatak, R.M.L. Evans, S. Langridge, C.H. Marrows, Phys. Rev. B 87, 024405 (2013). https://doi.org/10.1103/PhysRevB.87.024405

    Article  ADS  Google Scholar 

  98. D. Levis, L.F. Cugliandolo, L. Foini, M. Tarzia, Phys. Rev. Lett. 110, 207206 (2013). https://doi.org/10.1103/PhysRevLett.110.207206

    Article  ADS  Google Scholar 

  99. G.W. Chern, P. Mellado, O. Tchernyshyov, Phys. Rev. Lett. 106, 207202 (2011). https://doi.org/10.1103/PhysRevLett.106.207202

    Article  ADS  Google Scholar 

  100. J. Drisko, S. Daunheimer, J. Cumings, Phys. Rev. B 91, 224406 (2015). https://doi.org/10.1103/PhysRevB.91.224406

    Article  ADS  Google Scholar 

  101. J. Drisko, T. Marsh, J. Cumings, Nat. Commun. 8, 14009 (2017). https://doi.org/10.1038/ncomms14009

    Article  ADS  Google Scholar 

  102. U.B. Arnalds, A. Farhan, R.V. Chopdekar, V. Kapaklis, A. Balan, E.T. Papaioannou, M. Ahlberg, F. Nolting, L.J. Heyderman, B. Hjörvarsson, Appl. Phys. Lett. 101, 112404 (2012). https://doi.org/10.1063/1.4751844

    Article  ADS  Google Scholar 

  103. I. Gilbert, Y. Lao, I. Carrasquillo, L. O’Brien, J.D. Watts, M. Manno, C. Leighton, A. Scholl, C. Nisoli, P. Schiffer, Nat. Phys. 12, 162 (2015). https://doi.org/10.1038/nphys3520

    Article  Google Scholar 

  104. X. Zhou, G.L. Chua, N. Singh, A.O. Adeyeye, Adv. Funct. Mater. 26, 1437 (2016). https://doi.org/10.1002/adfm.201505165

    Article  Google Scholar 

  105. V.S. Bhat, F. Heimbach, I. Stasinopoulos, D. Grundler, Phys. Rev. B 93, 140401 (2016). https://doi.org/10.1103/PhysRevB.93.140401

    Article  ADS  Google Scholar 

  106. G.W. Chern, C. Reichhardt, C.J. Olson Reichhardt, New J. Phys. 16, 063051 (2014) https://doi.org/10.1088/1367-2630/16/6/063051

  107. G.W. Chern, C. Reichhardt, C. Nisoli, Appl. Phys. Lett. 104, 013101 (2014). https://doi.org/10.1063/1.4861118

    Article  ADS  Google Scholar 

  108. Z. Budrikis, P. Politi, R.L. Stamps, New J. Phys. 14(4), 045008 (2012). https://doi.org/10.1088/1367-2630/14/4/045008

    Article  ADS  Google Scholar 

  109. D. Davidović, S. Kumar, D. Reich, J. Siegel, S. Field, R.C. Tiberio, R. Hey, K. Ploog, Phys. Rev. Lett. 76, 815 (1996). https://doi.org/10.1103/PhysRevLett.76.815

    Article  ADS  Google Scholar 

  110. D. Davidović, S. Kumar, D.H. Reich, J. Siegel, S.B. Field, R.C. Tiberio, R. Hey, K. Ploog, Phys. Rev. B 55, 6518 (1997). https://doi.org/10.1103/PhysRevB.55.6518

    Article  ADS  Google Scholar 

  111. A. Libál, C.J.O. Reichhardt, C. Reichhardt, Phys. Rev. Lett. 102, 237004 (2009). https://doi.org/10.1103/PhysRevLett.102.237004

    Article  ADS  Google Scholar 

  112. M.L. Latimer, G.R. Berdiyorov, Z.L. Xiao, F.M. Peeters, W.K. Kwok, Phys. Rev. Lett. 111, 067001 (2013). https://doi.org/10.1103/PhysRevLett.111.067001

    Article  ADS  Google Scholar 

  113. A. Libál, C. Reichhardt, C.J. Olson Reichhardt, Phys. Rev. Lett. 97, 228302 (2006) https://doi.org/10.1103/PhysRevLett.97.228302

  114. Y. Han, Y. Shokef, A.M. Alsayed, P. Yunker, T.C. Lubensky, A.G. Yodh, Nature 456, 898 (2008). https://doi.org/10.1038/nature07595

    Article  ADS  Google Scholar 

  115. P. Mellado, A. Concha, L. Mahadevan, Phys. Rev. Lett. 109, 257203 (2012). https://doi.org/10.1103/PhysRevLett.109.257203

    Article  ADS  Google Scholar 

  116. Y.L. Wang, Z.L. Xiao, A. Snezhko, J. Xu, L.E. Ocola, R. Divan, J.E. Pearson, G.W. Crabtree, W.K. Kwok, Science 352, 962 (2016). https://doi.org/10.1126/science.aad8037

    Article  ADS  Google Scholar 

  117. R.P. Cowburn, M.E. Welland, Science 287, 1466 (2000). https://doi.org/10.1126/science.287.5457.1466

    Article  ADS  Google Scholar 

  118. A. Imre, G. Csaba, L. Ji, A. Orlov, G.H. Bernstein, W. Porod, Science 311, 205 (2006). https://doi.org/10.1126/science.1120506

    Article  ADS  Google Scholar 

  119. J.J. Hopfield, Proc. Nat. Acad. Sci. 79, 2554 (1982). https://doi.org/10.1073/pnas.79.8.2554

    Article  ADS  MathSciNet  Google Scholar 

  120. D. Bhowmik, L. You, S. Salahuddin, Nat. Nanotechnol. 9, 59 (2014). https://doi.org/10.1038/nnano.2013.241

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am grateful to Jason Morgan for the AFM/MFM images in Fig. 16.1 and MFM images in Figs. 16.3a and 16.7a, Aaron Stein for the SEM image in Fig. 16.5f, and Sophie Morley for the AFM/MFM images in Fig. 16.2, and (with assistance from Peter Fischer and Mi-Young Im) for the XTM image in Fig. 16.3d.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher H. Marrows .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marrows, C.H. (2021). Experimental Studies of Artificial Spin Ice. In: Udagawa, M., Jaubert, L. (eds) Spin Ice. Springer Series in Solid-State Sciences, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-030-70860-3_16

Download citation

Publish with us

Policies and ethics