Skip to main content

Anomalous Transport Properties of Pyrochlore Iridates

  • Chapter
  • First Online:
Spin Ice

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 197))

Abstract

Pyrochlore rare-earth iridates Ln\(_2\)Ir\(_2\)O\(_7\) (Ln: lanthanides) is a unique frustrated Kondo lattice system composed of localized 4f moments and Ir 5d conduction electrons. Recent active research has revealed that the Kondo coupling between the 4f electron and the Ir 5d bands leads to novel transport properties. First, we will make an overview of the phase diagram of pyrochlore rare-earth iridates Ln\(_2\)Ir\(_2\)O\(_7\). Next, we focus on the phenomena associated with spin ice physics. Ln\(_2\)Ir\(_2\)O\(_7\) (Ln \(=\) Nd, Sm, Eu, \(\ldots \)) exhibits a metal-insulator transition, while Pr\(_2\)Ir\(_2\)O\(_7\) does not show any sign of long range ordering. Both Pr and Nd moments have a local \(\langle 111 \rangle \) Ising anisotropy. In the metallic state, localized 4f moments are coupled through the RKKY interaction. For Pr\(_2\)Ir\(_2\)O\(_7\), a ferromagnetic correlation between Pr moments is developed on cooling. On the other hand, Nd\(_2\)Ir\(_2\)O\(_7\) exhibits a metal-insulator transition at 33 K, and then, all-in all-out magnetic structure of Nd moments emerges below 10 K, as observed in the neutron scattering experiments. For Nd\(_2\)Ir\(_2\)O\(_7\), antiferromagnetic correlation between Nd moments is dominant. Metal insulator transition of Nd\(_2\)Ir\(_2\)O\(_7\) can be suppressed by the application of pressure. The insulating phase disappears above 10 GPa. In the pressure induced metallic state, a new phase transition emerges around 3 K. This phase transition is likely due to ferromagnetic ordering, suggesting an ordered spin ice of Nd moment. In the metallic frustrated magnet Pr\(_2\)Ir\(_2\)O\(_7\), a spontaneous Hall effect is observed at zero field in the absence of uniform magnetization, suggesting an emergence of a chiral spin liquid. The origin of this spontaneous Hall effect is ascribed to chiral spin textures, which are inferred from the magnetic measurements indicating the spin ice-rule formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A tetrahedron, a building block of pyrochlore lattice, is a triangle-based object.

References

  1. M. Hanawa, Y. Muraoka, T. Tayama, T. Sakakibara, J. Yamaura, and Z. Hiroi, Phys. Rev. Lett. 87, 187001 (2001). https://doi.org/10.1103/PhysRevLett.87.187001

  2. Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y. Tokura, Science 291, 2573 (2001). https://doi.org/10.1126/science.1058161

  3. S. Yonezawa, Y. Muraoka, Y. Matsushita, and Z. Hiroi, J. Phys.: Condens. Matter 16, L9 (2004). https://doi.org/10.1088/0953-8984/16/3/L01

  4. S. Nakatsuji, Y. Machida, Y. Maeno, T. Tayama, T. Sakakibara, J. van Duijn, L. Balicas, J. N. Millican, R. T. Macaluso, and J. Y. Chan, Phys. Rev. Lett. 96, 087204 (2006). https://doi.org/10.1103/PhysRevLett.96.087204

  5. K. Matsuhira, M. Wakeshima, R. Nakanishi, T. Yamada, A. Nakamura, W. Kawano, S. Takagi, and Y. Hinatsu, J. Phys. Soc. Jpn. 76, 043706 (2007). https://doi.org/10.1143/JPSJ.76.043706

  6. A. Yamamoto, P. A. Sharma, Y. Okamoto, A. Nakao, H. A. Katori, S. Niitaka, D. Hashizume, and H. Takagi, J. Phys. Soc. Jpn. 76, 043703 (2007). https://doi.org/10.1143/JPSJ.76.043703

  7. Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, T. sakakibara, Nature 463, 210 (2009). https://doi.org/10.1038/nature08680

  8. K. Momma, and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). https://doi.org/10.1107/S0021889811038970

  9. K. Matsuhira, M. Wakeshima, Y. Hinatsu, and S. Takagi, J. Phys. Soc. Jpn. 80, 094701 (2011). https://doi.org/10.1143/JPSJ.80.094701

  10. D. Yanagishima and Y. Maeno, J. Phys. Soc. Jpn. 70, 28 (2001) . https://doi.org/10.1143/JPSJ.70.28

  11. K. Matsuhira, K. Kuroda, T. Sakakibara, M. Wakeshima, and Y. Hinatsu, JPS Conf. Proc. 3, 013017 (2014). https://doi.org/10.7566/JPSCP.3.013017

  12. L. Savary, E.-G. Moon, and L. Balents, Phys. Rev. X 4, 041027 (2014). https://doi.org/10.1103/PhysRevX.4.041027

  13. M. Watahiki, K. Tomiyasu, K. Matsuhira, K. Iwasa, M. Yokoyama, S. Takagi, M. Wakeshima, and Y. Hinatsu, J. Phys.: Conf. Ser. 320, 012080 (2011). https://doi.org/10.1088/1742-6596/320/1/012080

  14. K. Matsuhira, Y. Hinatsu, K. Tenya, H. Amitsuka, and T. Sakakibara, J. Phys. Soc. Jpn. 71, 1576 (2002). https://doi.org/10.1143/JPSJ.71.1576

  15. A. Ikeda and H. Kawamura, J. Phys. Soc. Jpn. 77, 073707 (2008). https://doi.org/10.1143/JPSJ.77.073707

  16. S. Onoda and Y. Tanaka, Phys. Rev. B 86, 094411 (2011). https://doi.org/10.1103/PhysRevB.86.094411

  17. H. Ishizuka, M. Udagawa, and Y. Motome, J. Phys. Soc. Jpn. 81, 113706 (2012). https://doi.org/10.1143/JPSJ.81.113706

  18. G. Chen and M. Hermele, Phys. Rev. B 86, 235129 (2012). https://doi.org/10.1103/PhysRevB.86.235129

  19. M. Udagawa, H. Ishizuka, and Y. Motome, Phys. Rev. Lett. 108, 066406 (2012). https://doi.org/10.1103/PhysRevLett.108.066406

  20. The anomaly in specific heat shows a strong sample dependence. As MIT is sharper, the anomaly is clearly observed. Even when an anomaly in magnetic susceptibility caused by MIT is observed, the specific heat has no clear peak

    Google Scholar 

  21. J. J. Ishikawa, E. C. T. O’ Farrell, and S. Nakatsuji, Phys. Rev. B 85, 245109 (2012). https://doi.org/10.1103/PhysRevB.85.245109

  22. S. Zhao, J. M. Mackie, D. E. MacLaughlin, O. O. Bernal, J. J. Ishikawa, Y. Ohta, and S. Nakatsuji, Phys. Rev. B 83, 180402(R) (2011). https://doi.org/10.1103/PhysRevB.83.180402

  23. K. Tomiyasu, K. Matsuhira, K. Iwasa, M. Watahiki, S. Takagi, M. Wakeshima, Y. Hinatsu, M. Yokoyama, K. Ohoyama, and K. Yamada, J. Phys. Soc. Jpn. 81, 034709 (2012). https://doi.org/10.1143/JPSJ.81.034709

  24. H. Guo, K. Matsuhira, I. Kawasaki, M. Wakeshima, Y. Hinatsu, I. Watanabe, and Z. Xu, Phys. Rev. B 88, 060411(R) (2013). https://doi.org/10.1103/PhysRevB.88.060411

  25. H. Sagayama, D. Uematsu, T, Arima, K. Sugimoto, J. J. Ishikawa, E. O’Farrell, and S. Nakatsuji, Phys. Rev. B 87, 100403(R) (2013). https://doi.org/10.1103/PhysRevB.87.100403

  26. J. Yamaura, K. Ohgushi, H. Ohsumi, T. Hasegawa, I. Yamauchi, K. Sugimoto, S. Takeshita, A. Tokuda, M. Takata, M. Udagawa, M. Takigawa, H. Harima, T. Arima and Z. Hiroi, Phys. Rev. Lett. 108, 247205 (2012). https://doi.org/10.1103/PhysRevLett.108.247205

  27. The XRD measurements for single crystal Nd\(_2\)Ir\(_2\)O\(_7\) were performed by J. Yamaura

    Google Scholar 

  28. T. Hasegawa, N. Ogita, K. Matsuhira, S. Takagi, M. Wakeshima, Y. Hinatsu, and M. Udagawa, J. Phys.: Conf. Ser. 200, 012054 (2010). https://doi.org/10.1088/1742-6596/200/1/012054

  29. M. Sakata, T. Kagayama, K, Shimizu, K. Matsuhira, S. Takagi, M. Wakeshima, and Y. Hinatsu, Phys. Rev. B 83, 041102(R) (2011). https://doi.org/10.1103/PhysRevB.83.041102

  30. The present resistance value of 1 \(\Omega \) approximately corresponds to 5 m\(\Omega cm\) although it is hard to convert the resistance into the resistivity because the shape of sample is not exactly a rectangular parallelepiped. The resistivity of Nd\(_2\)Ir\(_2\)O\(_7\) is roughly twice as large as that of Pr\(_2\)Ir\(_2\)O\(_7\)

    Google Scholar 

  31. F. F. Tafti, J. J. Ishikawa, A. McCollam, S. Nakatsuji, and S. R. Julian, Phys. Rev. B 85, 205104 (2012). https://doi.org/10.1103/PhysRevB.85.205104

  32. S. K. Pandey and L. Maiti, Phys. Rev. B 82, 035110 (2010). https://doi.org/10.1103/PhysRevB.82.035110

  33. F. Ishii et al., J. Phys. Soc. Jpn. 84, 073703 (2015). https://doi.org/10.1143/JPSJ.84.073703

  34. Y. Machida et al., J. Phys. Chem. Solids 66, 1435 (2005). https://doi.org/10.1016/j.jpcs.2005.05.026

  35. S. Nakatsuji et al., J. Phys. Conf. Ser. 320, 012056 (2011). https://doi.org/10.1088/1742-6596/320/1/012056

  36. Y. Tokiwa, J. J. Ishikawa, S. Nakatsuji, P. Gegenwart, Nat. Mater. 13, 356 (2014). https://doi.org/10.1038/nmat3900

  37. D. R. Hamann, Phys. Rev. 158, 570 (1967). https://doi.org/10.1103/PhysRev.158.570

  38. A. C. Hewson, The Kondo Problem of Heavy Fermions (Cambridge University Press, Cambridge, England, 1993). https://doi.org/10.1017/CBO9780511470752

  39. Y. Taguchi et al., Science 291, 2573 (2001). https://doi.org/10.1126/science.1058161

  40. Y. Machida et al., Phys. Rev. Lett. 98, 057203 (2007). https://doi.org/10.1103/PhysRevLett.98.057203

  41. L. Balicas, S. Nakatsuji, Y. Machida and S. Onoda, Phys. Rev. Lett. 106, 217204 (2011). https://doi.org/10.1103/PhysRevLett.106.217204

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nakatsuji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsuhira, K., Nakatsuji, S. (2021). Anomalous Transport Properties of Pyrochlore Iridates. In: Udagawa, M., Jaubert, L. (eds) Spin Ice. Springer Series in Solid-State Sciences, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-030-70860-3_14

Download citation

Publish with us

Policies and ethics