Skip to main content

Novel Electronic Phases of Matter: Coupling to Itinerant Electrons

  • Chapter
  • First Online:
Spin Ice

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 197))

  • 1232 Accesses

Abstract

In this chapter, we will address the properties of itinerant electrons coupled with spin ice, which we call “itinerant spin ice”. In a broader scope, this system serves as a prototypical example of the itinerant electrons interacting with geometrically frustrated magnet. To describe the nature of this frustrated itinerant systems, we firstly introduce the classical Kondo lattice model, and discuss its basic properties. After that, equipped with the knowledge of the model, we consider the thermodynamic and transport properties of itinerant spin ice, with reference to the experimental data of Pr\(_2\)Ir\(_2\)O\(_7\). Finally, we end this chapter with the discussion on several on-going topics and future perspectives for the frustrated itinerant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P. W. Anderson, Phys. Rev. 102, 1008 (1956) https://doi.org/10.1103/PhysRev.102.1008

  2. S. Kondo et al., Phys. Rev. Lett. 78, 3729 (1997) https://doi.org/10.1103/PhysRevLett.78.3729

  3. H. Wada et al., J. Magn. Magn. Mater. 70, 17-19 (1987) https://doi.org/10.1016/0304-8853(87)90350-7

  4. T. Shinkoda, K. Kumagai, and K. Asayama, J. Phys. Soc. Jpn. 46, 1754 (1979) https://doi.org/10.1143/JPSJ.46.1754

  5. S. Iguchi, Y. Kumano, K. Ueda, S. Kumakura, and Y. Tokura, Phys. Rev. B 84, 174416 (2011) https://doi.org/10.1103/PhysRevB.84.174416

  6. Y. Taguchi et al., Science 291, 2573 (2001) https://doi.org/10.1126/science.1058161

  7. S. Nakatsuji et al., Phys. Rev. Lett. 96, 087204 (2006) https://doi.org/10.1103/PhysRevLett.96.087204

  8. Y. Machida et al., Phys. Rev. Lett. 98, 057203 (2007) https://doi.org/10.1103/PhysRevLett.98.057203

  9. Y. Machida et al., Nature 463, 210 (2010) https://doi.org/10.1038/nature08680

  10. G. H. Jonker and J. H. Van Santen, Physica 16, 337 (1950); J. H. Van Santen and G. H. Jonker, ibid. 16, 599 (1950) https://doi.org/10.1016/0031-8914(50)90104-2https://doi.org/10.1016/0031-8914(50)90033-4

  11. C. Zener, Phys. Rev. 82, 403 (1951) https://doi.org/10.1103/PhysRev.82.403

  12. C. Zener, Phys. Rev. 81, 440 (1951) https://doi.org/10.1103/PhysRev.81.440

  13. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955) https://doi.org/10.1103/PhysRev.100.675

  14. P. G. de Gennes, Phys. Rev. 118, 141 (1960) https://doi.org/10.1103/PhysRev.118.141

  15. K. Kubo and N. Ohata, J. Phys. Soc. Jpn. 33, 21 (1972) https://doi.org/10.1143/JPSJ.33.21

  16. N. Furukawa, “Thermodynamics of the double exchange systems Physics of Manganites”, In: Kaplan T.A., Mahanti S.D. (eds) Physics of Manganites. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47091-8

  17. G. R. Stewart, Rev. Mod. Phys. 73, 797 (2001) https://doi.org/10.1103/RevModPhys.73.797

  18. N. Macris and J. L. Lebowitz, J. Math. Phys. 38, 2084 (1997) https://doi.org/10.1063/1.531923

  19. H. Tsunetsugu, M. Sigrist, and K. Ueda, Rev. Mod. Phys. 69, 809 (1997) https://doi.org/10.1103/RevModPhys.69.809

  20. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963) https://doi.org/10.1098/rspa.1967.0007

  21. L. M. Falicov and J. C. Kimball, Phys. Rev. Lett. 22, 997 (1969) https://doi.org/10.1103/PhysRevLett.22.997

  22. A. Kitaev, Ann. Phys. 321, 2 (2006) https://doi.org/10.1016/j.aop.2005.10.005

  23. N. Furukawa, J. Phys. Soc. Jpn. 63, 3214 (1994) https://doi.org/10.1143/JPSJ.63.3214

  24. U. Brandt and C. Mielsch, Z. Phys. B: Condens. Matter 75, 365 (1989) https://doi.org/10.1007/BF01321824

  25. U. Brandt and C. Mielsch, Z. Phys. B: Condens. Matter 79, 295 (1990) https://doi.org/10.1007/BF01406598

  26. U. Brandt and C. Mielsch, Z. Phys. B: Condens. Matter 82, 37 (1991) https://doi.org/10.1007/BF01313984

  27. U. Brandt, A. Fledderjohann, and G. Hulsenbeck, Z. Phys. B: Condens. Matter 81, 409 (1990) https://doi.org/10.1007/BF01390822

  28. U. Brandt and A. Fledderjohann, Z. Phys. B: Condens. Matter 87, 111 (1992) https://doi.org/10.1007/BF01308265

  29. U. Brandt and M. P. Urbanek, Z. Phys. B: Condens. Matter 89, 297 (1992) https://doi.org/10.1007/BF01318160

  30. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989) https://doi.org/10.1103/PhysRevLett.62.324

  31. A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996) https://doi.org/10.1103/RevModPhys.68.13

  32. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966) https://doi.org/10.1103/PhysRevLett.17.1133

  33. C. Proetto and A. Lopez, J. Physique Lett. 44, L635 (1983) https://doi.org/10.1051/jphyslet:019830044015063500

  34. D. Loss, F. L. Pedrocchi and A. J. Leggett, Phys. Rev. Lett. 107, 107201 (2011) https://doi.org/10.1103/PhysRevLett.107.107201

  35. A. Weise, G. Wellein, A. Alvermann, and H. Fehske, Rev. Mod. Phys. 78, 275 (2006) https://doi.org/10.1103/RevModPhys.78.275

  36. K. Barros and Y. Kato, Phys. Rev. B 88, 235101 (2013) https://doi.org/10.1103/PhysRevB.88.235101

  37. X. Y. Xu, Y. Qi, J. Liu, L. Fu, Z. Y. Meng, Phys. Rev. B 96, 041119 (2017) https://doi.org/10.1103/PhysRevB.96.041119

  38. N. Furukawa, J. Phys. Soc. Jpn. 64, 2734 (1995) https://doi.org/10.1143/JPSJ.64.2734

  39. N. Furukawa, J. Phys. Soc. Jpn. 64, 2754 (1995) https://doi.org/10.1143/JPSJ.64.2754

  40. For a review, “Colossal Magnetoresistive Oxides”, edited by Y. Tokura (Gordon & Breach Science Publisher, 2000) ISBN 90-5699-231-7

    Google Scholar 

  41. T. Ohashi, N. Kawakami and H. Tsunetsugu, Phys. Rev. Lett. 97, 066401 (2006) https://doi.org/10.1103/PhysRevLett.97.066401

  42. T. Ohashi, T. Momoi, H. Tsunetsugu and N. Kawakami, Phys. Rev. Lett., 100, 076402 (2008) https://doi.org/10.1103/PhysRevLett.100.076402

  43. I. Martin and C. D. Batista: Phys. Rev. Lett. 101, 156402 (2008) https://doi.org/10.1103/PhysRevLett.101.156402

  44. Y. Akagi and Y. Motome: J. Phys. Soc. Jpn. 79, 083711 (2010) https://doi.org/10.1143/JPSJ.79.083711

  45. Y. Akagi, M. Udagawa and Y. Motome, Phys. Rev. Lett. 108, 096401 (2012) https://doi.org/10.1103/PhysRevLett.108.096401

  46. Y. Kato, I. Martin and C. D. Batista, Phys. Rev. Lett. 105, 266405 (2010) https://doi.org/10.1103/PhysRevLett.105.266405

  47. R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954) https://doi.org/10.1103/PhysRev.95.1154

  48. J. Smit, Physica 21, 877 (1955) https://doi.org/10.1016/S0031-8914(55)92596-9

  49. L. Berger, Phys. Rev. B, 2, 4559 (1970) https://doi.org/10.1103/PhysRevB.2.4559

  50. K. Ohgushi, S. Murakami and N. Nagaosa, Phys. Rev. B, 62, R6065 (2000) https://doi.org/10.1103/PhysRevB.62.R6065

  51. M. Taillefumier et al., Phys. Rev. B, 74, 085105 (2006) https://doi.org/10.1103/PhysRevB.74.085105

  52. For a recent review, N. Nagaosa et al., Rev. Mod. Phys. 82, 1539 (2010) https://doi.org/10.1103/RevModPhys.82.1539

  53. G. Tatara and H. Kawamura, J. Phys. Soc. Jpn. 71, 2613 (2002) https://doi.org/10.1143/JPSJ.71.2613

  54. M. Onoda, G. Tatara and N. Nagaosa, J. Phys. Soc. Jpn., 73, 2624 (2004) https://doi.org/10.1143/JPSJ.73.2624

  55. S. K. Pandey and L. Maiti, Phys. Rev. B 82, 035110 (2010) https://doi.org/10.1103/PhysRevB.82.035110

  56. F. Ishii et al., J. Phys. Soc. Jpn. 84, 073703 (2015) https://doi.org/10.1143/JPSJ.84.073703

  57. T. Kondo et al., Nat. Commun. 6, 10042 (2015) https://doi.org/10.1038/ncomms10042

  58. Y. Machida et al., J. Phys. Chem. Solids 66, 1435 (2005) https://doi.org/10.1016/j.jpcs.2005.05.026

  59. Y. Tokiwa, J. J. Ishikawa, S. Nakatsuji, P. Gegenwart, Nat. Mater. 13, 356 (2014) https://doi.org/10.1038/nmat3900

  60. J. Kondo, Prog. Theor. Phys. 32, 37 (1964) https://doi.org/10.1143/PTP.32.37

  61. M. Udagawa, H. Ishizuka and Y. Motome, Phys. Rev. Lett. 108, 066406 (2012) https://doi.org/10.1103/PhysRevLett.108.066406

  62. H. Ishizuka, M. Udagawa and Y. Motome, JPS Conf. Proc. 3, 014013 (2014) https://doi.org/10.7566/JPSCP.3.014013

  63. H. Ishizuka, Y. Motome, Phys. Rev. B 88, 100402(R) (2013). https://doi.org/10.1103/PhysRevB.88.100402

    Article  ADS  Google Scholar 

  64. M. Udagawa and R. Moessner, Phys. Rev. Lett. 111, 036602 (2013) https://doi.org/10.1103/PhysRevLett.111.036602

  65. M. Udagawa, Spin 5(02), 1540004 (2015). https://doi.org/10.1142/S2010324715400044

  66. H. Ishizuka, M. Udagawa and M. Motome, J. Phys.: Conf. Ser. 400, 032027 (2012) https://doi.org/10.1088/1742-6596/400/3/032027

  67. R.G. Melko, M.J.P. Gingras, J. Phys.: Cond. Matter 16, R1277 (2004). https://doi.org/10.1088/0953-8984/16/43/R02

  68. A. Ikeda and H. Kawamura, J. Phys. Soc. Jpn. 77, 073707 (2008) https://doi.org/10.1143/JPSJ.77.073707

  69. S. V. Isakov, R. Moessner and S. L. Sondhi, Phys. Rev. Lett., 95, 217201 (2005) https://doi.org/10.1103/PhysRevLett.95.217201

  70. Gia-Wei Chern, Saurabh Maiti, Rafael M. Fernandes, Peter Wölfle, Phys. Rev. Lett. 110, 146602 (2013) https://doi.org/10.1103/PhysRevLett.110.146602

  71. M. Udagawa, M. Ogata and Z. Hiroi, J. Phys. Soc. Jpn. 71, 2365 (2002) https://doi.org/10.1143/JPSJ.71.2365

  72. R. Flint and T. Senthil, Phys. Rev. B 87, 125147 (2013) https://doi.org/10.1103/PhysRevB.87.125147

  73. SungBin Lee, A. Paramekanti and Y. B. Kim, Phys. Rev. Lett. 111, 196601 (2013) https://doi.org/10.1103/PhysRevLett.111.196601

  74. Eun-Gook Moon, C. Xu, Y. B. Kim, L. Balents, Phys. Rev. Lett. 111, 206401 (2013) https://doi.org/10.1103/PhysRevLett.111.206401

  75. A. A. Abrikosov and S. D. Beneslavskii, J. Exp. Theor. Phys. 32, 699 (1971) www.jetp.ac.ru/cgi-bin/e/index/e/32/4/p699?a=list

  76. A. A. Abrikosov, J. Exp. Theor. Phys. 39, 709 (1974) www.jetp.ac.ru/cgi-bin/e/index/e/39/4/p709?a=list

  77. E. Verwey, Nature 144, 327 (1939) https://doi.org/10.1038/144327b0

  78. H. Ishizuka, M. Udagawa and Y. Motome, Phys. Rev. B 83, 125101 (2011) https://doi.org/10.1103/PhysRevB.83.125101

  79. L. D. C. Jaubert, M. Haque, R. Moessner, Phys. Rev. Lett. 107, 177202 (2011) https://doi.org/10.1103/PhysRevLett.107.177202

  80. L. D. C. Jaubert, Swann Piatecki, Masudul Haque, R. Moessner, Phys. Rev. B, 85, 054425 (2012) https://doi.org/10.1103/PhysRevB.85.054425

  81. M. Udagawa and Y. Motome, Phys. Rev. Lett. 104, 106409 (2010) https://doi.org/10.1103/PhysRevLett.104.106409

  82. M. Udagawa, H. Ishizuka and Y. Motome, Phys. Rev. Lett. 104, 226405 (2010) https://doi.org/10.1103/PhysRevLett.104.226405

  83. S. Fujimoto, Phys. Rev. Lett. 103, 047203 (2009) https://doi.org/10.1103/PhysRevLett.103.047203

  84. H. Katsura, N. Nagaosa, and P. A. Lee, Phys. Rev. Lett. 104, 066403 (2010) https://doi.org/10.1103/PhysRevLett.104.066403

  85. R. Matsumoto and S. Murakami, Phys. Rev. B 84, 184406, (2011) https://doi.org/10.1103/PhysRevB.84.184406

  86. A. Rahmani, R. A. Muniz and I. Martin, Phys. Rev. X 3, 031008 (2013) https://doi.org/10.1103/PhysRevX.3.031008

  87. H. Katsura, I. Maruyama, A. Tanaka, Hal Tasaki, Europhys. Lett. 91, 57007 (2010) https://doi.org/10.1209/0295-5075/91/57007

  88. M. Udagawa, H. Ishizuka and Y. Motome, JPS Conf. Proc. 3, 014009 (2014) https://doi.org/10.7566/JPSCP.3.014009

  89. H. Ishizuka, Y. Motome, Phys. Rev. B 87, 081105(R) (2013). https://doi.org/10.1103/PhysRevB.87.081105

    Article  ADS  Google Scholar 

  90. Gia-Wei Chern, Armin Rahmani, Ivar Martin, Cristian D. Batista, Phys. Rev. B 90, 241102 (2014) https://doi.org/10.1103/PhysRevB.90.241102

  91. Arnab Sen, R. Moessner, S. L. Sondhi, Phys. Rev. Lett. 110, 107202 (2013) https://doi.org/10.1103/PhysRevLett.110.107202

  92. D. L. Bergman, C. Wu and L. Balents, Phys. Rev. B 78, 125104 (2008) https://doi.org/10.1103/PhysRevB.78.125104

  93. F. Kagawa et al., Nat. Phys. 9, 419 (2013) https://doi.org/10.1038/nphys2642

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Udagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Udagawa, M. (2021). Novel Electronic Phases of Matter: Coupling to Itinerant Electrons. In: Udagawa, M., Jaubert, L. (eds) Spin Ice. Springer Series in Solid-State Sciences, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-030-70860-3_13

Download citation

Publish with us

Policies and ethics