Skip to main content

Quantum Monte Carlo Simulations of Quantum Spin Ice

  • Chapter
  • First Online:
Spin Ice

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 197))

  • 1298 Accesses

Abstract

One of the strongest reasons for studying “quantum spin–ice” materials is the possibility that quantum tunnelling between different ice states could convert the classical magnetostatics of spin ice into a lattice analogue of quantum electrodynamics, with both magnetic and electric charges, and emergent “photon” excitations. In this Chapter we review what Quantum Monte Carlo simulations have taught us about this exotic quantum spin liquid state, and how this might help us to understand real materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Hermele, M.P.A. Fisher, L. Balents, Phys. Rev. B 69, 064404 (2004). https://doi.org/10.1103/PhysRevB.69.064404

  2. N. Shannon, O. Sikora, F. Pollmann, K. Penc, P. Fulde, Phys. Rev. Lett. 108, 067204 (2012). https://doi.org/10.1103/PhysRevLett.108.067204

  3. O. Benton, O. Sikora, N. Shannon, Phys. Rev. B. 86, 075154 (2012). https://doi.org/10.1103/PhysRevB.86.075154

  4. A. Banerjee, S.V. Isakov, K. Damle, Y.B. Kim, Phys. Rev. Lett. 100, 047208 (2008). https://doi.org/10.1103/PhysRevLett.100.047208

  5. Y. Kato, S. Onoda, Phys. Rev. Lett 115, 077202 (2015). https://doi.org/10.1103/PhysRevLett.115.077202

  6. N. Shannon, G. Misguich, K. Penc, Phys. Rev. B 69, 220403(R) (2004). https://doi.org/10.1103/PhysRevB.69.220403

  7. O.F. Syljusen, S. Chakravarty, Phys. Rev. Lett. 96, 147004 (2006). https://doi.org/10.1103/PhysRevLett.96.147004

  8. C.-H. Chern, N. Nagaosa, Phys. Rev. Lett. 112, 247602 (2014). https://doi.org/10.1103/PhysRevLett.112.247602

  9. L.-P. Henry, T. Roscilde, Phys. Rev. Lett. 113, 027204 (2014). https://doi.org/10.1103/PhysRevLett.113.027204

  10. R. Moessner, S. Sondhi, Phys. Rev. B 68, 184512 (2003). https://doi.org/10.1103/PhysRevB.68.184512

  11. D. L. Bergman, R. Shindou, G. A. Fiete, and L. Balents, Phys. Rev. Lett 96 097207 (2006); erratum ibid 97, 139906 (2006). https://doi.org/10.1103/PhysRevLett.96.097207

  12. D.L. Bergman, G.A. Fiete, L. Balents, Phys. Rev. B 73, 134402 (2006). https://doi.org/10.1103/PhysRevB.73.134402

  13. O. Sikora, F. Pollmann, N. Shannon, K. Penc, P. Fulde, Phys. Rev. Lett. 103, 247001 (2009). https://doi.org/10.1103/PhysRevLett.103.247001

  14. O. Sikora, N. Shannon, F. Pollmann, K. Penc, P. Fulde, Phys. Rev. B 84, 115129 (2011). https://doi.org/10.1103/PhysRevB.84.115129

  15. J.-P. Lv, G. Chen, Y. Deng, Z.Y. Meng, Phys. Rev. Lett. 115, 037202 (2015). https://doi.org/10.1103/PhysRevLett.115.037202

  16. P.A. McClarty, O. Sikora, R. Moessner, K. Penc, F. Pollmann, N. Shannon, Phys. Rev. B 92, 094418 (2015). https://doi.org/10.1103/PhysRevB.92.094418

  17. J. Snyder, J.S. Slusky, R.J. Cava, P. Schiffer, Nature 413, 48 (2001). https://doi.org/10.1038/35092516

    Article  ADS  Google Scholar 

  18. K. Matsuhira, Y. Hinatsu, T. Sakakibara, J. Phys.: Condens. Matter 13, L737 (2001). https://doi.org/10.1088/0953-8984/13/31/101

    Article  ADS  Google Scholar 

  19. B. Klemke, M. Meissner, P. Strehlow, K. Kiefer, S.A. Grigera, D.A. Tennant, J. Low Temp. Phys. 163, 345 (2011). https://doi.org/10.1007/s10909-011-0348-y

    Article  ADS  Google Scholar 

  20. see e.g. D. Pomaranski, L. R. Yaraskavitch, S. Meng, K. A. Ross, H. M. L. Noad, H. A. Dabkowska, B. D. Gaulin and J. B. Kycia, Nat. Phys. 9, 353 (2013) and references therein. https://doi.org/10.1038/NPHYS2591

  21. B. Tomasello, C. Castelnovo, R. Moessner, J. Quintanilla, Phys. Rev. B 92, 155120 (2015). https://doi.org/10.1103/PhysRevB.92.155120

  22. J.G. Rau, M.J.P. Gingras, Phys. Rev. B 92, 144417 (2015). https://doi.org/10.1103/PhysRevB.92.144417

  23. Hamid R. Molavian, Michel J. P. Gingras and Benjamin Canals Phys. Rev. Lett. 98, 157204 (2007). https://doi.org/10.1103/PhysRevLett.98.157204

  24. K.A. Ross, L. Savary, B.D. Gaulin, L. Balents, Phys. Rev. X 1, 021002 (2011). https://doi.org/10.1103/PhysRevX.1.021002

  25. A.J. Princep, D. Prabhakaran, A.T. Boothroyd, D.T. Adroja, Phys. Rev. B 88, 104421 (2013). https://doi.org/10.1103/PhysRevB.88.104421

  26. A. H. Castro Neto, P. Pujol and E. Fradkin, Phys. Rev. B 74, 024302 (2006). https://doi.org/10.1103/PhysRevB.74.024302

  27. L.E. Bove, S. Klotz, A. Paciaroni, F. Sacchetti, Phys. Rev. Lett. 103, 165901 (2009). https://doi.org/10.1103/PhysRevLett.103.165901

  28. C. Drechsel-Grau, D. Marx, Phys. Rev. Lett. 112, 148302 (2014). https://doi.org/10.1103/PhysRevLett.112.148302

  29. O. Benton, O. Sikora, N. Shannon, Phys. Rev. B 93, 125143 (2016). https://doi.org/10.1103/PhysRevB.93.125143

  30. R. Youngblood, J.D. Axe, B.M. McCoy, Phys. Rev. B 21, 5212 (1980). https://doi.org/10.1103/PhysRevB.21.5212

    Article  ADS  Google Scholar 

  31. J.D. Bernal, R.H. Fowler, J. Chem. Phys. 1, 515 (1933). https://doi.org/10.1063/1.1749327

    Article  ADS  Google Scholar 

  32. L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935). https://doi.org/10.1021/ja01315a102

    Article  Google Scholar 

  33. W.F. Giauque, J.W. Stout, Am. J. Chem. Phys 58, 58 (1936). https://doi.org/10.1021/ja01298a023

    Article  Google Scholar 

  34. L. Savary, L. Balents, Phys. Rev. Lett. 108, 037202 (2012). https://doi.org/10.1103/PhysRevLett.108.037202

  35. S.-S. Lee and P. A. Lee Phys. Rev. B 74, 035107 (2006). https://doi.org/10.1103/PhysRevB.74.035107

  36. S. H. Curnoe, Phys. Rev. B 75, 212404 (2007); erratum ibid 76, 139903(E) (2007). https://doi.org/10.1103/PhysRevB.75.212404

  37. H. Yan, O. Benton, L. Jaubert, N. Shannon, Phys. Rev. B 95, 094422 (2017). https://doi.org/10.1103/PhysRevB.95.094422

  38. J.D. Thompson, P.A. McClarty, H.M. Ronnow, L.P. Regnault, A. Sorge, M.J.P. Gingras, Phys. Rev. Lett. 106, 187202 (2011). https://doi.org/10.1103/PhysRevLett.106.187202

  39. L.J. Chang, S. Onoda, Y. Su, Y.-J. Kao, K.-D. Tsuei, Y. Yasui, K. Kakurai, M.R. Lees, Nat. Commun. 3, 992 (2012). https://doi.org/10.1038/ncomms1989

    Article  ADS  Google Scholar 

  40. P. Fulde, K. Penc, N. Shannon, Ann. Phys. 11, 892 (2002). https://doi.org/10.1002/1521-3889

  41. C. Castelnovo, R. Moessner, S.L. Sondhi, Nature 451, 42 (2008). https://doi.org/10.1038/nature06433

    Article  ADS  Google Scholar 

  42. L. D. C. Jaubert and P. C. W. Holdsworth Nat. Phys. 5, 258 (2009). https://doi.org/10.1038/NPHYS1227

  43. J. Villain, J. Phys. France 36, 581 (1975). https://doi.org/10.1051/jphys:01975003606058100

    Article  Google Scholar 

  44. K. Wilson, Phys. Rev. D 10, 2445 (1974). https://doi.org/10.1103/PhysRevD.10.2445

    Article  ADS  Google Scholar 

  45. J.B. Kogut, Rev. Mod. Phys. 51, 659 (1979). https://doi.org/10.1103/RevModPhys.51.659

    Article  ADS  Google Scholar 

  46. A.H. Guth, Phys. Rev. D 21, 2291 (1980). https://doi.org/10.1103/PhysRevD.21.2291

    Article  ADS  MathSciNet  Google Scholar 

  47. E. Fradkin, S.H. Shenker, Phys. Rev. D 19, 3682 (1979). https://doi.org/10.1103/PhysRevD.19.3682

    Article  ADS  Google Scholar 

  48. D.S. Rokhsar, S.A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988). https://doi.org/10.1103/PhysRevLett.61.2376

    Article  ADS  Google Scholar 

  49. B. Lautrup, M. Nauenberg, Phys. Rev. Lett. 45, 1755 (1980). https://doi.org/10.1103/PhysRevLett.45.1755

    Article  ADS  Google Scholar 

  50. M. E. J. Newman and G.T. Barkema, Monte Carlo Methods in Statistical Physics, (Oxford University Press, Oxford New York, 1999), pp. 179–209. https://doi.org/10.1007/978-3-642-03163-2

  51. R.G. Melko, B.C. den Hertog, M.J.P. Gingras, Phys. Rev. Lett. 87, 067203 (2001). https://doi.org/10.1103/PhysRevLett.87.067203

  52. F. Pollmann, PhD. Thesis, Technical University of Dresden (2006)

    Google Scholar 

  53. M. Calandra Buonaura and S. Sorella, Phys. Rev. B 57, 11446 (1998). https://doi.org/10.1103/PhysRevB.57.11446

  54. C.L. Henley, Phys. Rev. B 71, 014424 (2005). https://doi.org/10.1103/PhysRevB.71.014424

  55. S. Sorella, Phys. Rev. B 64, 024512 (2001). https://doi.org/10.1103/PhysRevB.64.024512

  56. M. Capello, F. Becca, M. Fabrizio, S. Sorella, E. Tosatti, Phys. Rev. Lett. 94, 026406 (2005). https://doi.org/10.1103/PhysRevLett.94.026406

  57. D.A. Huse, W. Krauth, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 91, 167004 (2003). https://doi.org/10.1103/PhysRevLett.91.167004

  58. T. Fennell, P.P. Deen, A.R. Wildes, K. Schmalzl, D. Prabhakaran, A.T. Boothroyd, R.J. Aldus, D.F. McMorrow, S.T. Bramwell, Science 326, 415 (2009). https://doi.org/10.1126/science.1177582

    Article  ADS  Google Scholar 

  59. O.F. Syljuasen, A.W. Sandvik, Phys. Rev. E 66, 046701 (2002). https://doi.org/10.1103/PhysRevE.66.046701

  60. K. Louis and C. Gros, Phys. Rev. B 70, 100410(R) (2004). https://doi.org/10.1103/PhysRevB.70.100410 K. Damle et al. (unpublished)

  61. Roger G Melko, J. Phys.: Condens. Matter 19, 145203 (2007). https://doi.org/10.1088/0953-8984/19/14/145203

  62. Y.-B. Kim, private communication

    Google Scholar 

  63. N. Kawashima, K. Harada, J. Phys. Soc. Jpn. 73, 1379 (2004). https://doi.org/10.1143/JPSJ.73.1379

    Article  ADS  Google Scholar 

  64. Y. Kato, T. Suzuki, N. Kawashima, Phys. Rev. E 75, 066703 (2007). https://doi.org/10.1103/PhysRevE.75.066703

  65. P. Bonville, J. A. Hodges, E. Bertin, J.-P. Bouchaud, P. Dalmas de Reotier, L.-P. Regnault, H. M. Ronnow, J.-P. Sanchez, S. Sosin, and A. Yaouanc, Hyperfine Interact. 156/157, 103 (2004). https://doi.org/10.1023/B:HYPE.0000043235.21257.13

  66. K.A. Ross, J.P.C. Ruff, C.P. Adams, J.S. Gardner, H.A. Dabkowska, Y. Qiu, J.R.D. Copley, B.D. Gaulin, Phys. Rev. Lett. 103, 227202 (2009). https://doi.org/10.1103/PhysRevLett.103.227202

  67. K.A. Ross, L.R. Yaraskavitch, M. Laver, J.S. Gardner, J.A. Quilliam, S. Meng, J.B. Kycia, D.K. Singh, T. Proffen, H.A. Dabkowska, B.D. Gaulin, Phys. Rev. B 84, 174442 (2011). https://doi.org/10.1103/PhysRevB.84.174442

  68. J.F. Nagle, J. Math. Phys. 7, 1484 (1966). https://doi.org/10.1063/1.1705058

    Article  ADS  Google Scholar 

  69. M.P. Kwasigroch, B. Douçot, C. Castelnovo, Phys. Rev. B 95, 1484 (2017). https://doi.org/10.1103/PhysRevB.95.134439

  70. N.V. Prokofev, B.V. Svistunov, I.S. Tupitsyn, J. Exp. Theor. Phys. 87, 310 (1998). https://doi.org/10.1134/1.558661

  71. N.V. Prokofev, B.V. Svistunov, I.S. Tupitsyn, Phys. Lett. A 238, 253 (1998). https://doi.org/10.1016/S0375-9601(97)00957-2

  72. L. Pollet, Rep. Prog. Phys. 75, 094501 (2012). https://doi.org/10.1088/0034-4885/75/9/094501

  73. J.F. Nagle, Phys. Rev. 152, 190 (1966). https://doi.org/10.1103/PhysRev.152.190

    Article  ADS  Google Scholar 

  74. R. J. Baxter Exactly solved models in statistical mechanics, reprinted, 3rd edition. (Dover, Mineloa, 2007) ISBN 10 : 0486462714

    Google Scholar 

  75. S. Chakravarty, Phys. Rev. B 66, 224505 (2002). https://doi.org/10.1103/PhysRevB.66.224505

  76. G. Algara-Siller, O. Lehtinen, F. C. Wang, R. R. Nair, U. Kaiser, H. A. Wu, A. K. Geim and I. V. Grigorieva Nature 519, 443 (2015). https://doi.org/10.1038/nature14295

  77. X. Meng, J. Guo, J. Peng, J. Chen, Z. Wang, J.-R. Shi, X.-Z. Li, E.-G. Wang, Y. Jiang, Nat. Phys. 11, 235 (2015). https://doi.org/10.1038/nphys3225

    Article  Google Scholar 

  78. A.M. Polyakov, Nucl. Phys. B 120, 429 (1977). https://doi.org/10.1016/0550-3213(77)90086-4

    Article  ADS  Google Scholar 

  79. Z.H. Hao, A.G.R. Day, M.J.P. Gingras, Phys. Rev. B 90, 214430 (2014). https://doi.org/10.1103/PhysRevB.90.214430

  80. O. Petrova, R. Moessner and S. L. Sondhi Phys. Rev. B 92, 100401(R) (2015). https://doi.org/10.1103/PhysRevB.92.100401

  81. Y. Wan, J. Carrasquilla and R. G. Melko Phys. Rev. Lett. 116, 167202 (2016). https://doi.org/10.1103/PhysRevLett.116.167202

  82. D. Poilblanc, K. Penc, N. Shannon, Phys. Rev. B 75, 220503(R) (2007). https://doi.org/10.1103/PhysRevB.75.220503

    Article  ADS  Google Scholar 

  83. A.W. Glaetzle, M. Dalmonte, R. Nath, I. Rousochatzakis, R. Moessner, and P. Zoller Phys. Rev. X 4, 041037 (2014). https://doi.org/10.1103/PhysRevX.4.041037

  84. J. Ihm, J. Phys. A 29, L1 (1996). https://doi.org/10.1088/0305-4470/29/1/001

    Article  ADS  Google Scholar 

  85. F. Yen, T. Gao, J. Phys. Chem. Lett. 6, 2822 (2015). https://doi.org/10.1021/acs.jpclett.5b00797

    Article  Google Scholar 

  86. N. Bjerrum, Science 115, 385 (1952). https://doi.org/10.1126/science.115.2989.385

    Article  ADS  Google Scholar 

  87. V.F. Petrenko, R.W. Whitworth, Physics of Ice (Oxford University Press, Oxford, 1999). ISBN 9780198518945

    Google Scholar 

  88. S.V. Isakov, R. Moessner, S.L. Sondhi, D.A. Tennant, Phys. Rev. B. 91, 245152 (2015). https://doi.org/10.1103/PhysRevB.91.245152

  89. R. Siddharthan, B.S. Shastry, A.P. Ramirez, A. Hayashi, R.J. Cava, S. Rosenkranz, Phys. Rev. Lett. 83, 1854 (1999). https://doi.org/10.1103/PhysRevLett.83.1854

    Article  ADS  Google Scholar 

  90. B.C. den Hertog, M.J.P. Gingras, Phys. Rev. Lett. 84, 3430 (2000). https://doi.org/10.1103/PhysRevLett.84.3430

    Article  ADS  Google Scholar 

  91. R. Siddharthan, B.S. Shastry, A.P. Ramirez, Phys. Rev. B. 63, 184412 (2001). https://doi.org/10.1103/PhysRevLett.63.184412

  92. S.T. Bramwell, M.J. Harris, B.C. den Hertog, M.J.P. Gingras, J.S. Gardner, D.F. McMorrow, A.R. Wildes, A.L. Cornelius, J.D.M. Champion, R.G. Melko, T. Fennell, Phys. Rev. Lett. 87, 047205 (2001). https://doi.org/10.1103/PhysRevLett.87.047205

  93. T. Yavors’kii, T. Fennell, M.J.P. Gingras, S.T. Bramwell, Phys. Rev. Lett. 101, 037204 (2008). https://doi.org/10.1103/PhysRevLett.101.037204

  94. S.V. Isakov, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 95, 217201 (2005). https://doi.org/10.1103/PhysRevLett.95.217201

  95. A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry, Nature 399, 333 (1999). https://doi.org/10.1038/20619

    Article  ADS  Google Scholar 

  96. C.-J. Huang, Y. Deng, Y. Wan, Z.Y. Meng, Phys. Rev. Lett. 120, 167202 (2018). https://doi.org/10.1103/PhysRevLett.120.167202

  97. R. Sibille, N. Gauthier, H. Yan, M.C. Hatnean, J. Ollivier, B. Winn, U. Filges, G. Balakrishnan, M. Kenzelmann, N. Shannon, T. Fennell, Nat. Phys. 14, 711 (2018). https://doi.org/10.1038/s41567-018-0116-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nic Shannon .

Editor information

Editors and Affiliations

Ethics declarations

Two very recent publications are worth remark in context of this Chapter. The first, by Huang et al., presents dynamical structure factors for a model quantum spin ice found from QMC simulations, showing the dynamics of topological excitations [96]. The second by Sibille et al., reports the possible observation of emergent electrodynamics in the quantum spin ice candidate, Pr\(_2\)Hf\(_2\)O\(_7\) [97].

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shannon, N. (2021). Quantum Monte Carlo Simulations of Quantum Spin Ice. In: Udagawa, M., Jaubert, L. (eds) Spin Ice. Springer Series in Solid-State Sciences, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-030-70860-3_10

Download citation

Publish with us

Policies and ethics