Skip to main content

Spin Ice: Microscopic Physics

  • Chapter
  • First Online:
Spin Ice

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 197))

  • 1353 Accesses

Abstract

This chapter describes the microscopic physics of the rare-earth pyrochlore oxides, focussing on the lattice structure, the strong spin-orbit coupling, the crystal electric field and the large magnetic moment. We explain each of these in turn and how they are connected before examining the types of interaction that may arise in rare-earth pyrochlores. Taking all these ingredients together, we arrive at a relatively straightforward effective model that is known to capture, in quantitative detail, the thermodynamics of the classical spin ice materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Specifically, this is the second Bernal-Fowler ice rule which specifies that in common hexagonal water ice, two protons must be “near” and two protons must be “far” from each oxygen O\(^{2-}\) ion [20, 21]. The first Bernal-Fowler ice rule, which is not relevant to spin ice, states that there must be one and only one proton on each O\(^{2-}\)–O\(^{2-}\) bond.

  2. 2.

    Within the Pauling approximation, the entropy for water ice and spin ice are the same. The small corrections to Pauling’s value for water ice [24] and spin ice [25] have been computed. These corrections are not exactly the same for the two systems since water ice is hexagonal while spin ice is cubic.

  3. 3.

    Both Ho\(^{3+}\) and Dy\(^{3+}\) have more than a half-filled 4f shell and thus \(\mathsf{J}=\mathsf{L}+\mathsf{S}\) is maximized as opposed to being minimized (\(\mathsf{J}=\mathsf{L}-\mathsf{S}\)) for a less than half-filled shell [26].

  4. 4.

    As we are ultimately interested in the collective magnetic properties of these rare-earth pyrochlore materials, it is useful here to comment on some aspects of time-reversal symmetry of the crystal-field states for the rare-earth ions. For even electron systems, the action of the time reversal operator \(\Theta \) is \(\Theta ^2=1\) in contrast to the case of odd electron systems for which \(\Theta ^2=-1\). In general, for the amplitude corresponding to total angular momentum and its projection onto the \({\hat{{\mathbf {z}}}}\) axis \(\left| \mathsf{J},\mathsf{M} \right\rangle \), time reversal acts like \(\Theta c^{\mathsf{J}}_{\mathsf{M}} \left| \mathsf{J},\mathsf{M} \right\rangle = (-)^{\mathsf{J}+\mathsf{M}}(c^{\mathsf{J}}_{{\mathsf{M}}})^\star \left| \mathsf{J},-\mathsf{M} \right\rangle \). Here, \(c^{\mathsf{J}}_{\mathsf{M}}\) are expansion coefficients in the spectral decomposition of the crystal field doublet in terms of \(\left| \mathsf{J},\mathsf{M} \right\rangle \). For a non-Kramers doublet, \(\Theta | \pm \rangle =| \mp \rangle \). The crystal-field Hamiltonian can be chosen to have real matrix elements in the basis of \(\mathsf{J},\mathsf{M}\) and likewise for the eigenstates. Now, consider matrix elements of transverse components of the angular momentum between the two states of the crystal-field ground doublet.

    $$\begin{aligned} \left\langle +\right| \mathsf{J}^+ \left| - \right\rangle = \left\langle +\right| {\Theta }^{\dagger } \Theta \mathsf{J}^{+} {\Theta }^{\dagger } \Theta \left| - \right\rangle = - \left\langle -\right| \mathsf{J}^- \left| + \right\rangle . \end{aligned}$$
    (1.6)

    Furthermore, \(\langle +| \mathsf{J}^+ | -\rangle =\langle -| \mathsf{J}^- | +\rangle ^\star \). It follows that the matrix element vanishes. No such constraint holds for matrix elements between identical states of the doublet. However, we may show that

    $$\begin{aligned} \left\langle +\right| \mathsf{J}^\alpha \left| + \right\rangle = \left\langle +\right| {\Theta }^{\dagger } \Theta \mathsf{J}^\alpha {\Theta }^{\dagger } \Theta \left| + \right\rangle = - \left\langle -\right| \mathsf{J}^\alpha \left| - \right\rangle . \end{aligned}$$
    (1.7)

    The doublet corresponds to an Ising degree of freedom if these matrix elements are nonvanishing.

  5. 5.

    One also expects to find effective exchange terms coupling the transverse components of the pseudo-spin \({S} = 1/2\) describing the ground doublet in these compounds [63, 64] as well as in Tb\(_2\)Ti\(_2\)O\(_7\) [51] and in Yb\(_2\)Ti\(_2\)O\(_7\) [65, 66]. These introduce quantum fluctuations within the degenerate spin ice manifold and may give rise to a quantum spin ice state [67]. Three mechanisms generating effective transverse exchange and quantum dynamics have been discussed in the literature: (i) virtual crystal field fluctuations [51] (e.g. in Tb\(_2\)Ti\(_2\)O\(_7\)), (ii) sufficiently high-rank multipolar interactions in non-Kramers systems [63, 64] (e.g. in Pr\(_2\)(Sn,Zr)\(_2\)O\(_7\)) and (iii) multipolar, including dipolar, interactions in Kramers systems [65, 66, 68, 69] (e.g. in Yb\(_2\)Ti\(_2\)O\(_7\) and Er\(_2\)Ti\(_2\)O\(_7\)) This will be discussed in further detail in subsequent chapters (e.g. see Chap. 9 by Savary and Balents, Chap. 10 by Shannon and Chap. 12 by Ross).

References

  1. P. Schiffer, A.P. Ramirez, D.A. Huse, A.J. Valentino, Phys. Rev. Lett. 73, 2500 (1994). https://doi.org/10.1103/PhysRevLett.73.2500

  2. P. Schiffer, A.P. Ramirez, D.A. Huse, P.L. Gammel, U. Yaron, D.J. Bishop, A.J. Valentino, Phys. Rev. Lett. 74, 2379 (1995). https://doi.org/10.1103/PhysRevLett.74.2379

  3. J.A. Quilliam, S. Meng, H.A. Craig, L.R. Corruccini, G. Balakrishnan, O. A. Petrenko, A. Gomez, S.W. Kycia, M.J.P. Gingras, J.B. Kycia, Phys. Rev. B 87, 174421 (2013). https://doi.org/10.1103/PhysRevB.87.174421

  4. Y. Okamoto, M. Nohara, H. Aruga-Katori, H. Takagi, Phys. Rev. Lett. 99, 137207 (2007). https://doi.org/10.1103/PhysRevLett.99.137207

  5. S.-H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q. Huang, T.H. Kim, S.-W. Cheong, Nature 418, 856 (2002). https://doi.org/10.1038/nature00964

  6. A. Sadeghi, M. Alaei, F. Shahbazi, M.J.P. Gingras, Phys. Rev. B 91, 140407 (2015). https://doi.org/10.1103/PhysRevB.91.140407

  7. J.S. Gardner, M.J.P. Gingras, J.E. Greedan, Rev. Mod. Phys. 82, 53 (2010). https://doi.org/10.1103/RevModPhys.82.53

  8. J.S. Gardner, S.R. Dunsiger, B.D. Gaulin, M.J.P. Gingras, J.E. Greedan, R.F. Kiefl, M.D. Lumsden, W.A. MacFarlane, N.P. Raju, J.E. Sonier, I. Swainson, Z. Tun, Phys. Rev. Lett. 82, 1012 (1999). https://doi.org/10.1103/PhysRevLett.82.1012

  9. M.J.P. Gingras, C.V. Stager, N.P. Raju, B.D. Gaulin, J.E. Greedan, Phys. Rev. Lett. 78, 947 (1997). https://doi.org/10.1103/PhysRevLett.78.947

  10. B.D. Gaulin, J.N. Reimers, T.E. Mason, J.E. Greedan, Z. Tun, Phys. Rev. Lett. 69, 3244 (1992). https://doi.org/10.1103/PhysRevLett.69.3244

  11. M.J. Harris, S.T. Bramwell, D.F. McMorrow, T. Zeiske, K.W. Godfrey, Phys. Rev. Lett. 79, 2554 (1997). https://doi.org/10.1103/PhysRevLett.79.2554

  12. A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B. S.Shastry, Nature 399, 333 (1999). https://doi.org/10.1038/20619

  13. K. Matsuhira, Y. Hinatsu, K. Tenya, H. Amitsuka, T. Sakakibara, J. Phys. Soc. Jpn. 71, 1576 (2002). https://doi.org/10.1143/JPSJ.71.1576

  14. H. Kadowaki, Y. Ishii, K. Matsuhira, Y. Hinatsu, Phys. Rev. B 65, 144421 (2002). https://doi.org/10.1103/PhysRevB.65.144421

  15. K. Matsuhira, M.Wakeshima, Y. Hinatsu, C. Sekine, C. Paulsen,T. Sakakibara, S. Takagi, J. Phys.: Conf. Ser. 320, 012050 (2011). https://doi.org/10.1088/1742-6596/320/1/012050

  16. H.D. Zhou, J.G. Cheng, A.M. Hallas, C.R. Wiebe, G. Li, L. Balicas, J.S. Zhou, J.B. Goodenough, J.S. Gardner, E.S. Choi, Phys. Rev. Lett. 108, 207206 (2012). https://doi.org/10.1103/PhysRevLett.108.207206

  17. J. Lago, I Živković, B.Z. Malkin, J. Rodriguez Fernandez, P. Ghigna, P. Dalmas de Réotier, A Yaouanc, T. Rojo, Phys. Rev. Lett. 104, 247203 (2010). https://doi.org/10.1103/PhysRevLett.104.247203

  18. S.T. Bramwell, M.J. Harris, J. Phys.: Condens. Matter 10, L215 (1998). https://doi.org/10.1088/0953-8984/10/14/002

  19. R. Moessner, Phys. Rev. B 57, 5587 (1998). https://doi.org/10.1103/PhysRevB.57.R5587

  20. J.D. Bernal, R.H. Fowler, J. Chem. Phys. 1, 515 (1933). https://doi.org/10.1063/1.1749327

  21. S.T. Bramwell, M.J.P. Gingras, Science 294, 1495 (2001). https://doi.org/10.1126/science.1064761

  22. P.W. Anderson, Phys. Rev. 102, 1008 (1956). https://doi.org/10.1103/PhysRev.102.1008

  23. L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935). https://doi.org/10.1021/ja01315a102

  24. J.F. Nagle, J. Math Phys. 7, 1484 (1966). https://doi.org/10.1063/1.1705058

  25. R.R.P. Singh, J. Oitmaa, Phys. Rev. B 85, 144414 (2012). https://doi.org/10.1103/PhysRevB.85.144414

  26. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt, 1976)

    Google Scholar 

  27. S. Erfanifam, S. Zherlitsyn, S. Yasin, Y. Skourski, J. Wosnitza, A.A. Zvyagin, P. McClarty, R. Moessner, G. Balakrishnan, O.A. Petrenko, Phys. Rev. B 90, 064409 (2014). https://doi.org/10.1103/PhysRevB.90.064409

  28. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Dover, 1986)

    Google Scholar 

  29. P. Fazekas, Lecture Notes on Electron Correlation and Magnetism (World Scientific, 1999)

    Google Scholar 

  30. M.T. Hutchings, in Solid State Physics, vol. 16, ed. by F. Seitz, D. Turnbull (Academic, New York, 1964), p. 227

    Google Scholar 

  31. K.R. Lea, M.J.M. Leask, W.P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962). https://doi.org/10.1016/0022-3697(62)90192-0

  32. P.-A. Lindgard, J. Phys. C 8, 3401 (1975). https://doi.org/10.1016/0304-8853(85)90225-2

  33. J.G. Rau, M.J.P. Gingras, Phys. Rev. B 92, 144417 (2015). https://doi.org/10.1103/PhysRevB.92.144417

  34. L.G. Mamsurova, K.S. Pigal’skii, K.K. Pukhov, N.G. Trusevich, L.G. Shcherbakova. Sov. Phys. JETP 67, 550 (1988). http://www.jetp.ac.ru/cgi-bin/e/index/e/67/3/p550?a=list

  35. B.D. Gaulin, J.S. Gardner, P.A. McClarty, M.J.P. Gingras, Phys. Rev. B 84, 140402(R) (2011). https://doi.org/10.1103/PhysRevB.84.140402

  36. K. Kimura, S. Nakatsuji, J-J. Wen, C. Broholm, M. B. Stone, E. Nishibori, H. Sawa, Nature Comm. 4, 1934 (2013). https://doi.org/10.1038/ncomms2914

  37. Y-P. Huang, G. Chen, M. Hermele, Phys. Rev. Lett. 112, 167203 (2014). https://doi.org/10.1103/PhysRevLett.112.167203

  38. K. Matsuhira, Y. Hinatsu,T. Sakakibara, J. Phys.: Condens. Matter 13, L737 (2001). https://doi.org/10.1088/0953-8984/13/31/101

  39. J. Snyder, J.S. Slusky, R.J. Cava, P. Schiffer, Nature 413, 48 (2001). https://doi.org/10.1038/35092516

  40. J.A. Quilliam, L.R. Yaraskavitch, H.A. Dabkowska, B.D. Gaulin, J.B. Kycia, Phys. Rev. B 83, 094424 (2011). https://doi.org/10.1103/PhysRevB.83.094424

  41. H.M. Revell, L.R. Yaraskavitch, J.D. Mason, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, B.D. Gaulin, P. Henelius, J.B. Kycia, Nat. Phys. 9 34 (2013). https://doi.org/10.1038/nphys2466

  42. S. Rosenkranz, A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry, J. Appl. Phys. 84, 5914 (2000). https://doi.org/10.1063/1.1323535

  43. Y.M. Jana, A. Sengupta, D. Ghosh, J. Mag. Mag. Materials 248, 7 (2002). https://doi.org/10.1016/S0304-8853(01)00983-0

  44. B. Z. Malkin, A. R. Zakirov, M. N. Popova, S. A. Klimin, E. P. Chukalina, E. Antic-Fidancev, P. Goldner, P. Aschehoug, G. Dhalenne, Phys. Rev. B 70, 075112 (2004) https://doi.org/10.1103/PhysRevB.70.075112

  45. T.T.A. Lummen, I.P. Handayani, M.C. Donker, D. Fausti, G. Dhalenne, P. Berthet, A. Revcolevschi, P.H. M. van Loosdrecht, Phys. Rev. B 77, 214310 (2008). https://doi.org/10.1103/PhysRevB.77.214310

  46. B.Z. Malkin, T.T.A. Lummen, P.H.M. van Loosdrecht, G. Dhalenne, A.R. Zakirov, J. Phys.:Condens. Matter 22, 276003 (2010). https://doi.org/10.1088/0953-8984/22/27/276003

  47. A. Bertin, Y. Chapuis, P. Dalmas de Réotier, A. Yaouanc, J. Phys.:Condens. Matter 24, 256003 (2012). https://doi.org/10.1088/0953-8984/24/25/256003

  48. M. Ruminy, E. Pomjakushina, K. Iida, K. Kamazawa, D.T. Adroja, U. Stuhr, T. Fennell, Phys. Rev. B 94, 024430 (2016). https://doi.org/10.1103/PhysRevB.94.024430

  49. J.S. Gardner, B.D. Gaulin, A.J. Berlinsky, P. Waldron, S.R. Dunsiger, N.P. Raju, J.E. Greedan, Phys. Rev. B 64, 224416 (2001). https://doi.org/10.1103/PhysRevB.64.224416

  50. Y.-J. Kao, M. Enjalran, A. Del Maestro, H.R. Molavian, M.J.P. Gingras, Phys. Rev. B 68, 172407 (2003). https://doi.org/10.1103/PhysRevB.68.172407

  51. H.R. Molavian, M.J.P. Gingras, B. Canals, Phys. Rev. Lett. 98, 157204 (2007). https://doi.org/10.1103/PhysRevLett.98.157204

  52. R. Siddharthan, B.S. Shastry, A.P. Ramirez, A. Hayashi, R.J. Cava, S. Rosenkranz, Phys. Rev. Lett. 83, 1854 (1999). https://doi.org/10.1103/PhysRevLett.83.1854

  53. B.C. den Hertog, M.J.P. Gingras, Phys. Rev. Lett. 84, 3430 (2000). https://doi.org/10.1103/PhysRevLett.84.3430

  54. Y. Tabata, H. Kadowaki, K. Matsuhira, Z. Hiroi, N. Aso, E. Ressouche, B. Fåk, Phys. Rev. Lett. 97, 257205 (2006). https://doi.org/10.1103/PhysRevLett.97.257205

  55. T. Yavorskii, T. Fennell, M.J.P. Gingras, S.T. Bramwell, Phys. Rev. Lett. 101, 037204 (2008). https://doi.org/10.1103/PhysRevLett.101.037204

  56. J.P.C. Ruff, R.G. Melko, M.J.P. Gingras, Phys. Rev. Lett. 95, 097202 (2005). https://doi.org/10.1103/PhysRevLett.95.097202

  57. P. Henelius, T. Lin, M. Enjalran, Z. Hao, J. G. Rau, J. Altosaar, F. Flicker, T. Yavors’kii, M.J.P. Gingras, Phys. Rev. B 93, 024402 (2016). https://doi.org/10.1103/PhysRevB.93.024402

  58. S.T. Bramwell, M.J. Harris, B.C. den Hertog, M.J.P. Gingras, JS. Gardner, D.F. McMorrow, A.R. Wildes, A.L. Cornelius, J.D.M. Champion, R.G. Melko, T. Fennell, Phys. Rev. Lett. 87, 047205 (2001). https://doi.org/10.1103/PhysRevLett.87.047205

  59. P.A. McClarty, O. Sikora, R. Moessner, K. Penc, F. Pollmann, N. Shannon, Phys. Rev. B 92, 094418 (2015). https://doi.org/10.1103/PhysRevB.92.094418

  60. M.J.P. Gingras, B.C. den Hertog, Can. J. Phys. 79, 1339 (2001). https://doi.org/10.1139/p01-099

  61. R.G. Melko, B.C. den Hertog, M.J.P. Gingras, Phys. Rev. Lett. 87, 067203 (2001). https://doi.org/10.1103/PhysRevLett.87.067203

  62. S. V. Isakov, R. Moessner, S. L. Sondhi, Phys. Rev. Lett. 95, 217201 (2005). https://doi.org/10.1103/PhysRevLett.95.217201

  63. S. Onoda, Y. Tanaka, Phys. Rev. B 83, 094411 (2011). https://doi.org/10.1103/PhysRevB.83.094411

  64. S. Lee, S. Onoda, L. Balents, Phys. Rev. B 86, 104412 (2012). https://doi.org/10.1103/PhysRevB.86.104412

  65. K.A. Ross, L. Savary, B.D. Gaulin, L. Balents, Phys. Rev. X 1, 021002 (2011). https://doi.org/10.1103/PhysRevX.1.021002

  66. L. Savary, L. Balents, Phys. Rev. Lett. 108, 037202 (2012). https://doi.org/10.1103/PhysRevLett.108.037202

  67. M.J.P. Gingras, P.A. McClarty, Rep. Prog. Phys. 77, 056501 (2014). https://doi.org/10.1088/0034-4885/77/5/056501

  68. S. Onoda, J. Phys.: Conf. Ser. 320, 012065 (2011). https://doi.org/10.1088/1742-6596/320/1/012065

  69. J.G. Rau, S. Petit, M.J.P. Gingras, Phys. Rev. B 93, 184408 (2016). https://doi.org/10.1103/PhysRevB.93.184408

  70. L.D.C. Jaubert, P.C.W. Holdsworth, J. Phys.: Condens. Matter 23, 164222 (2011). https://doi.org/10.1088/0953-8984/23/16/164222

  71. A. Sen, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 110, 107202 (2013). https://doi.org/10.1103/PhysRevLett.110.107202

  72. R. Youngblood, J.D. Axe, B.M. McCoy Phys. Rev. B 21, 5212 (1980). https://doi.org/10.1103/PhysRevB.21.5212

  73. C.L. Henley, Annu. Rev. Condens. Matter Phys. 1, 179 (2010). https://doi.org/10.1146/annurev-conmatphys-070909-104138

  74. C. Castelnovo, R. Moessner, S.L. Sondhi, Nature 451, 42 (2008). https://doi.org/10.1038/nature06433

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. P. Gingras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gingras, M.J.P., McClarty, P.A., Rau, J.G. (2021). Spin Ice: Microscopic Physics. In: Udagawa, M., Jaubert, L. (eds) Spin Ice. Springer Series in Solid-State Sciences, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-030-70860-3_1

Download citation

Publish with us

Policies and ethics