Skip to main content

The Physics of Evolution and Breaking Symmetry

  • Conference paper
  • First Online:
13th Chaotic Modeling and Simulation International Conference (CHAOS 2020)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Included in the following conference series:

Abstract

Paper is devoted to explaining the nature of symmetry breaking of dynamical classical and quantum systems in the framework of evolutionary physics. A brief explanation of the deterministic mechanism of irreversibility is presented. The nature of the non-potential forces, which leads to symmetry breaking, is analyzed. The concept of evolutionary nonlinearity and the deterministic symmetry breaking based on the motion equation for the structural particle and modified Schrödinger equation is discussed. The nature of the potential, which follows from evolutionary nonlinearity and leads to violation of symmetry in classical and quantum systems, is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Wigner, Symmetry and conservation laws. UFN 84(4) (1964); Events, laws of nature and principles of invariance. UFN 85(4) (1965); Violation of symmetry in physics. UFN 89(3) (1966)

    Google Scholar 

  2. F. Wilchek, The origin of mass. Mod. Phys. Lett. A 21(9) (2006)

    Google Scholar 

  3. N. Bor, The problem of causality in atomic physics. UFN 147(2) (1985)

    Google Scholar 

  4. G.M. Zaslavsky, Stochasticity of Dynamical Systems (Nauka, Moscow, 1984)

    Google Scholar 

  5. I. Prigogine, From the Existing to the Arising (Nauka, Moscow, 1980)

    Google Scholar 

  6. D.V. Shirkov, 60 years of broken symmetries in physics (From Bogolyubov’s theory of superfluidity to the Standard Model). UFN 179(6) (2009)

    Google Scholar 

  7. J. Mabillard, P. Gaspard, Microscopic approach to the macrodynamics of matter with broken symmetries. arXiv:2005.14012v1[cond-mat.stat-mech] 28 May 2020

  8. Y.B. Rumer, M.S. Rivkin, Thermodynamics (Stat. Phys. Kinet., Nauka, Moscow, 1977)

    Google Scholar 

  9. V. Somsikov, Deterministic mechanism of irreversibility. JAP, 14(3) (2018)

    Google Scholar 

  10. V.M. Somsikov, To the Basics of Physics Evolution (Nauka, Almaty, 2016)

    Google Scholar 

  11. G. Goldstein, Classical Mechanics (Nauka, Moscow, 1975)

    MATH  Google Scholar 

  12. V.M. Somsikov, Transition from the mechanics of material points to the mechanics of structured particles. Mod. Phys. Lett. B 4 (2016)

    Google Scholar 

  13. V.M. Somsikov, Deterministic irreversibility and the matter structure. JAP 16 (2019)

    Google Scholar 

  14. V.M. Somsikov, Non-linearity of dynamics of the non-equilibrium systems. World J. Mech. 2(7) (2017)

    Google Scholar 

  15. O. Penrose, Reversibility and irreversibility. (“PDE and Materials”, report no.44/2006 of the Mathematisches Forschungsintitut Oberwolfach (ed. J.M. Ball, R.D. James, S. Muller)) (2006)

    Google Scholar 

  16. V.M. Somsikov, Deterministic irreversibility mechanism and basic element of matter, in Proceedings of 12th Chaotic Modeling and Simulation. International Conference (Springer, 2020)

    Google Scholar 

  17. L.D. Landau, E.M. Lifshits, Physical Kinetics (Nauka, Moscow, 1979)

    Google Scholar 

  18. L.D. Landau, E.M. Lifshits, Statistical Physics (Nauka, Moscow, 1976)

    Google Scholar 

  19. V.M. Somsikov, A.B. Andreev, On criteria of transition to a thermodynamic description of system dynamics. Russian Phys. J. 58(11) (2016)

    Google Scholar 

  20. F. Baldovin, L.G. Moyano, C. Tsallis, Boltzmann-Gibbs thermal equilibrium distribution descends from Newton laws: a computational evidence. arXiv:cond-mat/0402635 v1 25 Feb 2004

  21. L. Peliti, R. Rechtman, Einstein’s approach to statistical mechanics: the 1902–04 papers. J. Stat. Phys. 167 (2017)

    Google Scholar 

  22. Yu.A. Loskutov, Charm of chaos. UFN 150(12) (2010)

    Google Scholar 

  23. V.M. Somsikov, The method of the description of dynamics nonequilibrium systems within the frames of classical mechanics. arX: physics/ 0703242 v1 29 September 2007

    Google Scholar 

  24. S. Boughn, Wherefore Quantum Mechanics? arXiv:1910.08069[physics.hist-ph]

  25. V.M. Somsikov, Limitation of classical mechanics and ways it’s expansion. PoS (Baldin ISHEPP XXII-047), in XXII International Baldin Seminar on High Energy Physics Problems, 15–20 JINR, Dubna, (2014)

    Google Scholar 

  26. V. Famourzadeh, M. Sefidkhosh, Straddling between determinism and randomness: Chaos theory vis-à-vis Leibniz. arXiv:1909.13635v1[physics.hist-ph] 30 Aug 2019

  27. J. Bernstein, A question of mass. Am. J. Phys. 79(1) (2011)

    Google Scholar 

  28. V.G. Zelevinsky, Lectures on quantum mechanics (Nsk., Sib. Univer. Publ. house, 2002)

    Google Scholar 

  29. L.D. Landau, To the theory of phase transitions. I. JETP, 7, (1937); Landau L.D. To the theory of phase transitions. II JETP, 7, (1937)

    Google Scholar 

  30. L.E. Gendenstein, I.V. Krive, Supersimmetriya in quantum mechanics. UFN 146(4) (1985)

    Google Scholar 

  31. P.W. Higgs, How was it possible to circumvent the Goldstone theorem. UFN. 85(10) (2015)

    Google Scholar 

  32. C. Lanczos, Variational Principles of Mechanics (Mir, Moscow, 1962)

    Google Scholar 

  33. N.E. Martínez-Pérez, C. Ramírez, Symmetry breaking in non conservative systems. arXiv: 1602.05255v1 [physics.class-ph] 17 Feb 2016

    Google Scholar 

  34. H.G. Callaway, Fundamental physics, partial models and time’s arrow, in Proceedings of the 2015 Conference on Model-based Reasoning (Springer, 2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav Somsikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Somsikov, V. (2021). The Physics of Evolution and Breaking Symmetry. In: Skiadas, C.H., Dimotikalis, Y. (eds) 13th Chaotic Modeling and Simulation International Conference. CHAOS 2020. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-70795-8_63

Download citation

Publish with us

Policies and ethics