Skip to main content

Is Weather Chaotic? Coexisting Chaotic and Non-chaotic Attractors Within Lorenz Models

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

The pioneering study of Lorenz in 1963 and a follow-up presentation in 1972 changed our view on the predictability of weather by revealing the so-called butterfly effect, also known as chaos. Over 50 years since (Lorenz in J. Atmos. Sci. 20:130–141, [1]) study, the statement of “weather is chaotic” has been well accepted. Such a view turns our attention from regularity associated with Laplace’s view of determinism to irregularity associated with chaos. Here, a refined statement is suggested based on recent advances in high-dimensional Lorenz models and real-world global models. In this study, we provide a report to: (1) Illustrate two kinds of attractor coexistence within Lorenz models (i.e., with the same model parameters but with different initial conditions). Each kind contains two of three attractors including point, chaotic, and periodic attractors corresponding to steady-state, chaotic, and limit cycle solutions, respectively. (2) Suggest that the entirety of weather possesses the dual nature of chaos and order associated with chaotic and non-chaotic processes, respectively. Specific weather systems may appear chaotic or non-chaotic within their finite lifetime. While chaotic systems contain a finite predictability, non-chaotic systems (e.g., dissipative processes) could have better predictability (e.g., up to their lifetime). The refined view on the dual nature of weather is neither too optimistic nor pessimistic as compared to the Laplacian view of deterministic unlimited predictability and the Lorenz view of deterministic chaos with finite predictability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The term “dimension” is conventionally used for a system of ODEs [31, 32]. In this study, the 5DLM, 7DLM, and 9DLM are referred to as high-dimensional or high-order Lorenz models [12].

  2. 2.

    Similar findings for the dependence of various solutions (i.e., chaotic and limit cycle solutions) on the strength of heating were also reported using a two-layer, quasi-geostrophic model that describes the finite-amplitude evolution of a single baroclinic wave by Pedlosky and Frenzen [34].

  3. 3.

    In our 5D-, 7D-, and 9DLMs, we can obtain closed form solutions of trivial and non-trivial equilibrium points and use them to verify the numerical solutions of equilibrium points.

  4. 4.

    By comparison, chaotic models in Lorenz [52,53,54] were not derived from physics-based partial differential equations.

  5. 5.

    Negative feedback can be found within the so-called Lorenz-Stenflo system that extends the 3DLM with one additional ODE containing one additional mode that takes rotation into consideration [55,56,57].

  6. 6.

    A torus is defined as a composite motion with two (or more) oscillatory frequencies whose ratio is irrational [8].

  7. 7.

    The coexistence of chaotic and quasi-periodic orbits has been recently documented in a modified Lorenz system by Saiki et al. [58].

  8. 8.

    Such a dependence on initial conditions, close to (or away from) the non-trivial equilibrium point, can be shown by the following YouTube video for a double pendulum (between 1:00 and 1:20).

    https://www.youtube.com/watch?v=LfgA2Auyo1A.

  9. 9.

    As a result, we agree with Prof. Arakawa that the predictability limit is not necessarily a fixed value [46].

References

  1. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  2. E.N. Lorenz, Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? in Proceedings of 139th Meeting of AAAS Section on Environmental Sciences, New Approaches to Global Weather: GARP (Cambridge, MA, AAAS), 5 pp (1972). https://eaps4.mit.edu/research/Lorenz/Butterfly_1972.pdf

  3. E.N. Lorenz, The mechanics of vacillation. J. Atmos. Sci. 20, 448–464 (1963)

    Article  Google Scholar 

  4. E.N. Lorenz, The predictability of a flow which possesses many scales of motion. Tellus 21, 289–307 (1969)

    Article  Google Scholar 

  5. J. Gleick, Chaos: Making a New Science (Penguin, New York, 1987), p. 360

    MATH  Google Scholar 

  6. E.N. Lorenz, The predictability of hydrodynamic flow. Trans. N.Y. Acad. Sci., Ser. II, 25(4), 409–432 (1963)

    Google Scholar 

  7. B.-W. Shen, Nonlinear feedback in a five-dimensional Lorenz model. J. Atmos. Sci. 71, 1701–1723 (2014). https://doi.org/10.1175/JAS-D-13-0223.1

    Article  Google Scholar 

  8. S. Faghih-Naini, B.-W. Shen, Quasi-periodic in the five-dimensional non-dissipative Lorenz model: the role of the extended nonlinear feedback loop. Int. J. Bifurc. Chaos 28(6) 1850072 (20 pages) (2018). https://doi.org/10.1142/S0218127418500724

  9. C.C. Felicio, P.C. Rech, On the dynamics of five- and six-dimensional Lorenz models. J. Phys. Commun. 2, 025028 (2018)

    Article  Google Scholar 

  10. J. Guckenheimer, R.F. Williams, Structural stability of Lorenz attractors. Publ. Math. IHES. 50, 59 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. W.M. Macek, Nonlinear dynamics and complexity in the generalized Lorenz system. Nonlinear Dyn. 94, 2957–2968 (2018). https://doi.org/10.1007/s11071-018-4536-z

    Article  Google Scholar 

  12. S. Moon, B.-S. Han, J. Park, J.M. Seo, J.-J. Baik, Periodicity and chaos of high-order Lorenz systems. Int. J. Bifurc. Chaos 27(11) 1750176 (11 pages) (2017). https://doi.org/10.1142/S0218127417501760.

  13. S. Moon, J.M. Seo1, B.-S. Ha, J. Park, J.-J. Baik, A physically extended Lorenz system. Chaos 29, 063129 (2019). https://doi.org/10.1063/1.5095466

  14. Z.E. Musielak, D.E. Musielak, K.S. Kennamer, The onset of chaos in nonlinear dynamical systems determined with a new fractal technique. Fractals 13, 19–31 (2005)

    Article  Google Scholar 

  15. R.A. Pielke, X. Zeng, Long-term variability of climate. J. Atmos. Sci. 51, 155–159 (1994)

    Article  Google Scholar 

  16. T. Reyes, B.-W. Shen, A recurrence analysis of chaotic and non-chaotic solutions within a generalized nine-dimensional lorenz model. Chaos, Soliton. Fract. 125(2019), 1–12 (2019). https://doi.org/10.1016/j.chaos.2019.05.003

    Article  MATH  Google Scholar 

  17. D. Roy, Z.E. Musielak, Generalized Lorenz models and their routes to chaos. I. energy-conserving vertical mode truncations. Chaos Soliton. Fract. 32, 1038–1052 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. B.-W. Shen, Solitary waves, homoclinic orbits, and nonlinear oscillations within the non-dissipative Lorenz model, the inviscid pedlosky model, and the kdv equation, in The 13th Chaos International Conference (CHAOS2020), 9–12 June 2020.  https://doi.org/10.1007/978-3-030-70795-8_58 (in press)

  19. B.-W. Shen, R.A. Pielke Sr., X. Zeng, J.-J. Baik, S. Faghih-Naini, J. Cui, R. Atlas, Is weather chaotic? Coexistence of chaos and order within a generalized Lorenz model. Bull. Am. Meteorol. Soc.  2021;102(1):E148–58. https://doi.org/10.1175/BAMS-D-19-0165.1

  20. S. Smale, Mathematical problems for the next century. Math. Intell. 20(2), 7–15 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractor. (Springer, New York, 1982). 269 pp. Appl. Math. Sci.

    Google Scholar 

  22. J.C. Sprott, X. Wang, G. Chen, Coexistence of point, periodic and strange attractors. Int. J. Bifurc. Chaos 23(5) (2013). https://doi.org/10.1142/S0218127413500934

  23. W. Tucker, A rigorous ODE Solver and Smale’s 14th problem. Found. Comput. Math. 2, 53–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Q. Yang, G. Chen, A chaotic system with one saddle and two stable node-foci. Int. J. Bifurc. Chaos 18(5), 1393–1414 (2008)

    Google Scholar 

  25. T. Reyes, B.-W. Shen, A recurrence analysis of multiple African easterly waves during summer 2006, in Current Topics in Tropical Cyclone Research, Anthony Lupo, IntechOpen, 2020. https://doi.org/10.5772/intechopen.86859

  26. B.-W. Shen, Aggregated negative feedback in a generalized Lorenz model. Int. J. Bifurc. Chaos 29(3), 1950037 (2019). https://doi.org/10.1142/S0218127419500378

  27. B.-W. Shen, T.A.L Reyes, S. Faghih-Naini, Coexistence of chaotic and non-chaotic orbits in a new nine-dimensional Lorenz model, in: C. Skiadas, I. Lubashevsky (Eds.) 11th Chaotic Modeling and Simulation International Conference. CHAOS 2018. Springer Proceedings in Complexity (Springer, Cham). https://doi.org/10.1007/978-3-030-15297-0_22

  28. J.C. Sprott, A. Xiong, Classifying and quantifying basins of attraction. Chaos 25, 083101 (2015). https://doi.org/10.1063/1.4927643

    Article  MathSciNet  MATH  Google Scholar 

  29. J.C. Sprott, J.A. Vano, J.C. Wildenberg, M.B. Anderson, J.K. Noel, Coexistence and chaos in complex ecologies. Phys. Lett. A 335(2005), 207–212 (2005)

    Article  MATH  Google Scholar 

  30. B. Saltzman, Finite amplitude free convection as an initial value problem. J. Atmos. Sci. 19, 329–341 (1962)

    Article  Google Scholar 

  31. M. Hirsch, S. Smale, R.L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, 3rd edn. (Academic Press, 2013), 432 pp

    Google Scholar 

  32. J.M.T. Thompson, H.B. Stewart, Nonlinear Dynamics and Chaos, 2nd edn. (John Wiley & Sons, LTD, 2002), p. 437

    MATH  Google Scholar 

  33. P.G. Drazin, Nonlinear Systems (Cambridge), 333pp (1992)

    Google Scholar 

  34. J. Pedlosky, C. Frenzen, Chaotic and periodic behavior of finite-amplitude baroclinic waves. J. Atmos. Sci. 37, 1177–1196 (1980)

    Article  MathSciNet  Google Scholar 

  35. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983), p. 459

    Book  MATH  Google Scholar 

  36. T. Shimizu, Analytical form of the simplest limit cycle in the Lorenz model. Physica 97A, 383–398 (1979)

    Article  Google Scholar 

  37. S.H. Strogatz, Nonlinear Dynamics and Chaos. With Applications to Physics, Biology, Chemistry, and Engineering (Westpress view, Boulder, CO, 2015), p. 513

    MATH  Google Scholar 

  38. B.-W. Shen, On the predictability of 30-day global mesoscale simulations of African easterly waves during summer 2006: a view with the generalized Lorenz model. Geosciences 9, 281 (2019). https://doi.org/10.3390/geosciences9070281

  39. E.N. Lorenz, The Essence of Chaos (University of Washington Press, Seattle, 1993), p. 227

    Book  MATH  Google Scholar 

  40. E.N. Lorenz, 2008: The Butterfly Effect (University of Rome, Rome, Premio Felice Pietro Chisesi e Caterina Tomassoni Award Lecture, April 2008).

    Google Scholar 

  41. B.-W. Shen, Hierarchical scale dependence associated with the extension of the nonlinear feedback loop in a seven-dimensional Lorenz model. Nonlin. Proces. Geophys. 23, 189–203 (2016). https://doi.org/10.5194/npg-23-189-2016

    Article  Google Scholar 

  42. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Physica 16D, 285–317 (1985)

    MathSciNet  MATH  Google Scholar 

  43. X. Zeng, R. Eykholt, R.A. Pielke, Estimating the Lyapunov-exponent spectrum from short time series of low precision. Phys. Rev. Lett. 66, 3229–3232 (1991)

    Article  Google Scholar 

  44. X. Zeng, R.A. Pielke Sr., R. Eykholt, Chaos theory and its applications to the atmosphere. Bull. Atmos. Meteorol. Soc. 74(4), 631–644 (1993)

    Article  Google Scholar 

  45. R.C. Hilborn, Chaos and Nonlinear Dynamics. An Introduction for Scientists and Engineers, 2nd ed. (Oxford University Press, New York, 2000), pp. 650

    Google Scholar 

  46. B. Bailey, Quantifying the predictability of noisy space-time dynamical processes. Stat. Interf. 4, 535–549 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. R.O. Ding, J.P. Li, Nonlinear finite-time Lyapunov exponent and predictability. Phys. Lett. 354A, 396–400 (2007)

    Article  MATH  Google Scholar 

  48. B. Eckhardt, D. Yao, Local Lyapunov exponents in chaotic systems. Physica D 65, 100–108 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  49. J.M. Nese, Quantifying local predictability in phase space. Physica D. 35, 237–250 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  50. E. Ott, Chaos in Dynamical Systems, 2nd edn. (Cambridge University Press, 2002), 478pp

    Google Scholar 

  51. J. Yorke, E. Yorke, Metastable chaos: the transition to sustained chaotic behavior in the Lorenz model. J. Stat. Phys. 21, 263–277 (1979)

    Article  MathSciNet  Google Scholar 

  52. E.N. Lorenz, Predictability—A problem partly solved. Seminar on Predictability, vol. I, ECMWF (1996) (also, published as Lorenz (2006))

    Google Scholar 

  53. E.N. Lorenz, Designing chaotic models. J. Atmos. Sci. 62, 1574–1587 (2005)

    Article  MathSciNet  Google Scholar 

  54. E.N. Lorenz, Predictability – A problem partly solved, in T. Palmer, R. Hagedorn (eds.), Predictability of Weather and Climate). (Cambridge University Press, Cambridge, 2006), pp. 40–58. https://doi.org/10.1017/CBO9780511617652.004

  55. J. Park, H. Lee, Y.-L. Jeon, J.-J. Baik, Periodicity of the Lorenz-Stenflo equations. Phys. Scr. 90, 065201 (2015)

    Article  Google Scholar 

  56. J. Park, B.-S. Han, H. Lee, Y.-L. Jeon, J.-J. Baik, Stability and periodicity of high-order Lorenz-Stenflo equations. Phys. Scr. 91, 065202 (2016)

    Article  Google Scholar 

  57. J.C. Xavier, P.C. Rech, Regular and chaotic dynamics of the Lorenz-Stenflo system. Int. J. Bifurc. Chaos 20, 145–152 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Y. Saiki, E. Sander, J.A. Yorke, Generalized Lorenz equations on a three-sphere. Eur. Phys. J. Spec. Top. 226, 1751–1764 (2017)

    Article  Google Scholar 

  59. C. Grebogi, S.W. McDonald, E. Ott, J.A. Yorke, Final state sensitivity: an obstruction to predictability. Phys. Lett. A 99(9), 415–418 (1983)

    Article  MathSciNet  Google Scholar 

  60. K. McGuffie, A. Henderson-Sellers, The Climate Modeling Primer, 4th edn. (John Wiley & Sons, Ltd, 2014), p. 439

    Google Scholar 

  61. J.D. Daron, D.A. Stainforth, 2015: On quantifying the climate of the nonautonomous Lorenz-63 model. Chaos 25, 043103 (2015). https://doi.org/10.1063/1.4916789

    Article  MathSciNet  Google Scholar 

  62. D. Fultz, R.R. Long, G.V. Owens, W. Bohan, R. Kaylor, J. Weil, Studies of thermal convection in a rotating cylinder with some implications for large-scale atmospheric motion. Meteorol. Monographs 21(4) (1959). (American Meteorological Society)

    Google Scholar 

  63. R. Hide, Some experiments on thermal convection in a rotating liquid. Quart. f. Roy. Meteorol. Soc. 79, 161 (1953)

    Article  Google Scholar 

  64. M. Ghil, P. Read, L. Smith, 2010: Geophysical flows as dynamical systems: the influence of Hide’s experiments. Astron. Geophys. 51(4), 428–435 (Aug. 2010). https://doi.org/10.1111/j.1468-4004.2010.51428.x

    Article  Google Scholar 

  65. M. Ghil, S. Childress, Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics (Springer, New York, 1987), p. 485

    Book  MATH  Google Scholar 

  66. J. Pedlosky, Limit cycles and unstable baroclinic waves. J. Atmos. Sci. 29, 53–63 (1972)

    Article  Google Scholar 

  67. R.K. Smith, A note on a theory of vacillating baroclinic waves. J. Atmos. Sci. 32, 2027 (1975)

    Article  Google Scholar 

  68. R.K. Smith, J.M. Reilly, On a theory of amplitude vacillation in baroclinic waves: some numerical solutions. J. Atmos. Sci. 34, 1256–1260 (1977)

    Article  Google Scholar 

  69. M. Ghil, A.W. Robertson, “Waves” vs. “particles” in the atmosphere's phase space: a pathway to long-range forecasting? PNAS 99(suppl 1) 2493–2500 (2002). https://doi.org/10.1073/pnas.012580899

  70. E.N. Lorenz, Irregularity: a fundamental property of the atmosphere, in Crafoord Prize Lecture, presented at the Royal Swedish Academy of Sciences, Stockholm, September 28, 1983. Tellus, 36A, 98–110 (1984) (LM84)

    Google Scholar 

  71. E.N. Lorenz, Can chaos and intransitivity lead to interannual variability? Tellus 42A, 378–389 (1990)

    Article  Google Scholar 

  72. C. Masoller, A.C. Sicardi Schifino, L. Romanelli, Regular and chaotic behavior in the new Lorenz system. Phys. Lett. A 167(1992), 185–190 (1992)

    Article  MathSciNet  Google Scholar 

  73. L. Veen van, Time scale interaction in low-order climate models. Utrecht University Repository. (PhD Dissertation) (2002)

    Google Scholar 

  74. L. Veen, Baroclinic flow and the Lorenz-84 mode. Int. J. Bifurc. Chaos 13, 2117 (2003). https://doi.org/10.1142/S0218127403007904

    Article  MATH  Google Scholar 

  75. H. Wang, Y. Yu, G. Wen, Dynamical analysis of the Lorenz-84 atmospheric circulation model. J. Appl. Math. 2014, 296279, 15 pp (2014). https://doi.org/10.1155/2014/296279

  76. V. Lucarini, T. Bodai, 2019: Transitions across melancholia states in a climate model: reconciling the deterministic and stochastic points of view. Phys. Rev. Lett. 122, 158701 (2019)

    Article  Google Scholar 

  77. I.R. Garashchuk, D.I. Sinelshchikov, A.O. Kazakov, N.A. Kudryashov, Hyperchaos and multistability in the model of two interacting microbubble contrast agents editors-pick. Chaos 29, 063131 (2019). https://doi.org/10.1063/1.5098329

  78. J.H. Curry, S.E. Haupt, M.N. Limber, Truncated systems, initialization, and the slow manifold. Tellus 47A, 145161 (1995)

    Google Scholar 

  79. E.N. Lorenz, On the existence of a slow manifold. J. Atmos. Sci. 43, 154471557 (1986)

    Article  MathSciNet  Google Scholar 

  80. E.N. Lorenz, The slow manifold. What is it? J. Atmos. Sci. 49, 24492451 (1992)

    Google Scholar 

  81. E.N. Lorenz, V. Krishnamurthy, On the nonexistence of a slow manifold. J. Atmos. Sci. 44, 29402950 (1987)

    Article  Google Scholar 

  82. L. Mitchell, G.A. Gottwald, Data assimilation in slow-fast systems using homogenized climate models. J. Atmos. Sci. 69, 1359–1377 (2012). https://doi.org/10.1175/JAS-D-11-0145.1

    Article  Google Scholar 

  83. M. Peña, E. Kalnay, 2004: Separating fast and slow modes in coupled chaotic systems. Nonlin. Proces. Geophys. 11, 319–327 (2004). https://doi.org/10.5194/npg-11-319-2004

    Article  Google Scholar 

  84. C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978), p. 593

    MATH  Google Scholar 

  85. V. Lucarini, Stochastic resonance for nonequilibrium systems. Phys. Rev. E 100, 062124 (2019). https://doi.org/10.1103/PhysRevE.100.062124

    Article  MathSciNet  Google Scholar 

  86. E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability (Cambridge, New York, 2003), 369 pp

    Google Scholar 

  87. E.N. Lorenz, Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci. 26, 636–646 (1969)

    Article  Google Scholar 

  88. C. Nicolis, 1992: Probabilistic aspects of error growth in atmospheric dynamics. Q. J. R. Meteorol. Soc. 118, 553–568 (1992)

    Article  Google Scholar 

  89. F. Zhang, Y.Q. Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen, K. Emanuel, What Is the predictability limit of midlatitude weather? J. of Atmos. 76, 1077–1091 (2019)

    Article  Google Scholar 

  90. H.-L. Liu, F. Sassi, R.R. Garcia, Error growth in a whole atmosphere climate model. J. Atmos. Sci. 66, 173–186 (2009)

    Article  Google Scholar 

  91. W.D. Collin et al., Description of the NCAR Community Atmosphere Model (CAM3). NCAR Tech. Note NCAR/TN-464+STR, 226pp (2004)

    Google Scholar 

  92. E.N. Lorenz, Computational chaos: a prelude to computational instability. Physica 35D, 299–317 (1989)

    MathSciNet  MATH  Google Scholar 

  93. Lewis, Roots of ensemble forecasting. Mon. Weather Rev. 133(7), 1865–1885 (2005)

    Google Scholar 

  94. F. Judt, Atmospheric predictability of the tropics, middle latitudes, and polar regions explored through global storm-resolving simulations. J. Atmos. Sci. 77, 257–276 (2020). https://doi.org/10.1175/JAS-D-19-0116.1

  95. B.-W. Shen, Homoclinic orbits and solitary waves within the non-dissipative Lorenz model and KdV equation. Int. J. Bifurc. Chaos. 30, 2050257–1–2050315 (2020). https://doi.org/10.1142/S0218127420502570

  96. B.-W. Shen, On periodic solutions in the non-dissipative Lorenz model: the role of the nonlinear feedback loop. Tellus A 70, 1471912 (2018). https://doi.org/10.1080/16000870.2018.1471912

  97. J. Cui, B.-W. Shen, A Kernel Principal Component Analysis of Coexisting Attractors within a Generalized Lorenz Model. Chaos, Solitons & Fractals, 146. https://doi.org/10.1016/j.chaos.2021.110865

  98. R. Pielke, The real butterfly effect (2008). https://pielkeclimatesci.wordpress.com/2008/04/29/the-realbutterfly-effect/

Download references

Acknowledgements

We thank reviewers of the manuscript, the editor, and Drs. M. Alexander, R. Anthes, B. Bailey, J. Buchmann, D. Durran, M. Ghil, F. Judt, B. Mapes, Z. Musielak, T. Krishnamurti (Deceased), C.-D. Lin, T. Palmer, J. Pedlosky, J. Rosenfeld, R. Rotunno, I. A. Santos, C.-L. Shie, S. Vannitsem, and F. Zhang (Deceased) for valuable comments and discussions. We appreciate the eigenvalue analysis provided by Mr. N. Ferrante. We are grateful for support from the College of Science at San Diego State.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Wen Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, BW. et al. (2021). Is Weather Chaotic? Coexisting Chaotic and Non-chaotic Attractors Within Lorenz Models. In: Skiadas, C.H., Dimotikalis, Y. (eds) 13th Chaotic Modeling and Simulation International Conference. CHAOS 2020. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-70795-8_57

Download citation

Publish with us

Policies and ethics