Abstract
Applying a fractal method of analyzing the dynamics of the structural units of any complex system, a mathematical concept is built, namely that of fractal atomicity. The construction of such a concept involves defining dynamic variables in the form of fractal functions, defining scale resolutions, defining a principle of scale covariance as a fundamental principle of motion, equations of evolution, etc. Finally, some specific mathematical properties of the fractal atom are also established.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
M. Agop, A. Gavriluţ, G. Ştefan, B. Doroftei, Implications of non-differentiable entropy on a space-time manifold. Entropy 17, 2184–2197 (2015)
K.M.R. Audenaert, Subadditivity of q-entropies for \(q>1\). J. Math. Phys. 48 (2007)
P. Cavaliere, F. Ventriglia, On nonatomicity for non-additive functions. J. Math. Anal. Appl. 415(1), 358–372 (2014)
I. Chiţescu, Finitely purely atomic measures and \(\cal{L}^{p}\)-spaces. An. Univ. Bucureşti Şt. Natur. 24, 23–29 (1975)
I. Chiţescu, Finitely purely atomic measures: coincidence and rigidity properties. Rend. Circ. Mat. Palermo 50(3), 455–476 (2001)
L. Drewnowski, Topological rings of sets, continuous set functions, integration, I, II, III. Bull. Acad. Polon. Sci. 20, 269–276, 277–286, 439–445 (1972)
A. Gavriluţ, Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel, Baire multivalued set functions. Fuzzy Sets Syst. 160, 1308–1317 (2009). Erratum in Fuzzy Sets Syst. 161, 2612–2613 (2010)
A. Gavriluţ, Fuzzy Gould integrability on atoms. Iran. J. Fuzzy Syst. 8(3), 113–124 (2011)
A. Gavriluţ, Regular Set Multifunctions (Pim Publishing House, Iaşi, 2012)
A. Gavriluţ, A. Croitoru, On the Darboux property in the multivalued case. Annals of the University of Craiova. Math. Comput. Sci. Ser. 35, 130–138 (2008)
A. Gavriluţ, A. Croitoru, Non-atomicity for fuzzy and non-fuzzy multivalued set functions. Fuzzy Sets Syst. 160, 2106–2116 (2009)
A. Gavriluţ, A. Croitoru, Pseudo-atoms and Darboux property for set multifunctions. Fuzzy Sets Syst. 161(22), 2897–2908 (2010)
A. Gavriluţ, M. Agop, An Introduction to the Mathematical World of Atomicity Through a Physical Approach (ArsLonga Publishing House, Iaşi, 2016)
A. Gavriluţ, A. Iosif, A. Croitoru, The Gould integral in Banach lattices. Positivity 19(1), 65–82 (2015)
S. Gudder, Quantum measure and integration theory. J. Math. Phys. 50 (2009)
S. Gudder, Quantum integrals and anhomomorphic logics (2009), arXiv:quant-ph (0911.1572)
S. Gudder, Quantum measure theory. Math. Slovaca 60, 681–700 (2010)
S. Gudder, Quantum measures and the coevent interpretation. Rep. Math. Phys. 67, 137–156 (2011)
S. Gudder, Quantum measures and integrals
J.B. Hartle, The Quantum Mechanics of Cosmology. Lectures at Winter School on Quantum Cosmology and Baby Universes, Jerusalem, Israel, Dec 27, 1989–Jan 4, 1990 (1989)
J.B. Hartle, Spacetime quantum mechanics and the quantum mechanics of spacetime, in Proceedings of the Les Houches Summer School on Gravitation and Quantizations, ed. by J. Zinn-Justin, B. Julia, Les Houches, France, 6 Jul–1 Aug 1992 (North-Holland, 1995), arXiv:gr-qc/9304006
P.M. Iannaccone, M. Khokha, Fractal Geometry in Biological Systems: An Analitical Approach (1995)
M. Khare, A.K. Singh, Atoms and Dobrakov submeasures in effect algebras. Fuzzy Sets Syst. 159(9), 1123–1128 (2008)
J. Li, R. Mesiar, E. Pap, Atoms of weakly null-additive monotone measures and integrals. Inf. Sci. 134–139 (2014)
J. Li, R. Mesiar, E. Pap, E.P. Klement, Convergence theorems for monotone measures. Fuzzy Sets Syst. 281, 103–127 (2015)
B.B. Mandelbrot, The Fractal Geometry of Nature, Updated and augm. edn. (W.H. Freeman, New York, 1983)
I. Mercheş, M. Agop, Differentiability and Fractality in Dynamics of Physical Systems (World Scientific, 2015)
E. Pap, The range of null-additive fuzzy and non-fuzzy measures. Fuzzy Sets Syst. 65(1), 105–115 (1994)
E. Pap, Null-Additive Set Functions. Mathematics and Its Applications, vol. 337 (Springer, 1995)
E. Pap, Handbook of measure theory, in Some Elements of the Classical Measure Theory (2002), pp. 27–82
E. Pap, A. Gavriluţ, M. Agop, Atomicity via regularity for non-additive set multifunctions. Soft Comput. (Found.) 1–6 (2016). https://doi.org/10.1007/s00500-015-2021-x
K.P.S.B. Rao, M.B. Rao, Theory of Charges (Academic Press Inc., New York, 1983)
R. Salgado, Some identities for the q-measure and its generalizations. Mod. Phys. Lett. A 17, 711–728 (2002)
B. Schweizer, A. Sklar, Probabilistic Metric Spaces (Elsevier Science Publishing Co., Inc., 1983). Republished in 2005 by Dover Publications, Inc., with a new preface, errata, notes, and supplementary references
R.D. Sorkin, Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 9, 3119–3128 (1994)
R.D. Sorkin, Quantum measure theory and its interpretation, in Quantum Classical Correspondence: Proceedings of the 4\(^{\text{th}}\) Drexel Symposium on Quantum Non-integrability, ed. by D.H. Feng, B.-L. Hu (International Press, Cambridge Mass, 1997), pp. 229–251
R. Sorkin, Quantum dynamics without the wave function. J. Phys. A: Math. Theory 40, 3207–3231 (2007)
R. Sorkin, Quantum mechanics as quantum measure theory, arXiv:gr-qc/9401003
S. Surya, P. Waldlden, Quantum covers in q-measure theory (2008), ArXiv: quant-ph 0809.1951
H. Suzuki, Atoms of fuzzy measures and fuzzy integrals. Fuzzy Sets Syst. 41, 329–342 (1991)
C. Wu, S. Bo, Pseudo-atoms of fuzzy and non-fuzzy measures. Fuzzy Sets Syst. 158, 1258–1272 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Agop, M., Gavriluţ, A., Eva, L., Crumpei, G. (2021). Fractal Atomicity, a Fundamental Concept in the Dynamics of Complex Systems. In: Skiadas, C.H., Dimotikalis, Y. (eds) 13th Chaotic Modeling and Simulation International Conference. CHAOS 2020. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-70795-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-70795-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-70794-1
Online ISBN: 978-3-030-70795-8
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)