Skip to main content

Examples of Using Models and Measures on the Circle

  • Chapter
  • First Online:
Book cover Models and Measures in Measurements and Monitoring

Abstract

Examples of using the developed models and measures on the circle for the study of cyclic signals in various subject areas are given. The object of study is the phase shift between cyclic signals. The limiting case of cyclic signals are periodic signals, in particular harmonious signals. The solutions to the problems of precision ultrasonic echo-pulse thickness measurement of products from materials with significant attenuation are considered. A high probability of detecting information signals against additive noise is achieved through the use of selective circular statistics - the resulting vector length. These statistics are determined during processing phase measurement data in a sliding mode. A method for processing the results of multi-scale phase measurements based on numerical systems of residual classes in phase range finders and direction finders is considered. The method is different in that it allows to control the correctness of eliminating the ambiguity of phase measurements. The features of statistical data processing in environmental monitoring systems based on unmanned aerial systems during the flight of objects of increased environmental hazard are analyzed. The given examples testify to the powerful methodological potential of using the developed models and circle measures for use in precision phase measuring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lupenko, S., Lutsyk, N., Lapusta, Y.: Cyclic linear random process as a mathematical model of cyclic signals. Acta Mechanica et Automatica 9(4), 219–224 (2015). https://doi.org/10.1515/ama-2015-0035

    Article  Google Scholar 

  2. Lunden, J., Kassam, S.A., Koivunen, V.: Nonparametric cyclic correlation based detection for cognitive radio systems. In: 2008 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CrownCom 2008), pp. 1–6. Singapore. https://doi.org/10.1109/crowncom.2008.4562527

  3. Karpenko, O., Kuznetsov, A., Sai, V., Stasev, Yu.: Discrete signals with multi-level correlation function. Telecommun. Radio Eng. 71(1), 91–98 (2012). https://doi.org/10.1615/TelecomRadEng.v71.i1.100

    Article  Google Scholar 

  4. San Emeterio, J.L., Rodriguez-Hernandez, M.A.: Wavelet cycle spinning denoising of NDE ultrasonic signals using a random selection of shifts. J. Nondestr. Eval. 34, 270 (2015). https://doi.org/10.1007/s10921-014-0270-8

    Article  Google Scholar 

  5. Shahidan, S., Pulin, R., Bunnori, N.M., Holford, K.M.: Damage classification in reinforced concrete beam by acoustic emission signal analysis. Constr. Build. Mater. 45, 78–86 (2013). https://doi.org/10.1016/j.conbuildmat.2013.03.095

    Article  Google Scholar 

  6. Li, D., Ruan, T., Yuan, J.: Inspection of reinforced concrete interface delamination using ultrasonic guided wave non-destructive test technique. Sci. China Technol. Sci. 55, 2893–2901 (2012). https://doi.org/10.1007/s11431-012-4882-x

    Article  Google Scholar 

  7. Yu, Y., Guan, J.: Investigation of signal features of pulsed eddy current testing technique by experiments. Insight Non-Destruct. Test. Condition Monitor. 55(9), 487–491 (2013). https://doi.org/10.1784/insi.2012.55.9.487

    Article  Google Scholar 

  8. Derhunov, O., Kuts, Y., Shengur, S., Monchenko, O., Oliinyk, Y.: Improvement of ultrasonic testing method for materials with significant attenuation. Eastern-Europe. J. Enterprise Technol. 1, 9(91), 54–61 (2018). https://doi.org/10.15587/1729-4061.2018.122858

  9. Blyznjuk, E.D., Eremenko, V.S., Kuts, YuV, Bystraya, I.N., Monchenko, E.V., Tsapenko, V.K.: Phase signal detector for ultrasonic nondestructive testing. Tech. Diagnost. Non-Destruct. Test. 2, 21–24 (2011)

    Google Scholar 

  10. Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006). https://doi.org/10.1038/nmat1644

    Article  Google Scholar 

  11. Pantea, C., Rickel, D.G., Migliori, A.: Digital ultrasonic pulse-echo overlap system and algorithm for unambiguous determination of pulse transit time. Rev. Sci. Instrum. 76, 114902 (2005). https://doi.org/10.1063/1.2130715

    Article  Google Scholar 

  12. Babak, V., Eremenko, V., Zaporozhets, A.: Research of diagnostic parameters of composite materials using Johnson distribution. Int. J. Comput. 18(4), 483–494 (2019)

    Article  Google Scholar 

  13. Eremenko, V., Zaporozhets, A., Isaenko, V., Babikova, K.: Application of wavelet transform for determining diagnostic signs. In: Eremenko, V., Zaporozhets, A., Isaenko, V., Babikova, K. (eds.) CEUR Workshop Proceedings, vol. 2387, pp. 202–214. http://ceur-ws.org/Vol-2387/20190202.pdf

  14. Zaporozhets, A., Eremenko, V., Isaenko, V., Babikova, K.: Approach for creating reference signals for detecting defects in diagnosing of composite materials. In: Shakhovska, N., Medykovskyy, M. (eds.) Advances in Intelligent Systems and Computing IV. CCSIT 2019. Advances in Intelligent Systems and Computing, vol. 1080, pp. 154–172. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33695-0_12

  15. Coddington, I., Swann, W.C., Nenadovic, L., Newbury, N.R.: Rapid and precise absolute distance measurements at long range. Nat. Photon. 3, 351–356 (2009). https://doi.org/10.1038/nphoton.2009.94

    Article  Google Scholar 

  16. Kuts, Y.V., Yeremenko, V.S., Monchenko, E.V., Protasov, A.G.: Ultrasound method of multi‐layer material thickness measurement. In: AIP Conference Proceedings, 1096, 1115 (2009). https://doi.org/10.1063/1.3114079

  17. Payaro, M., Wiesel, A., Yuan, J., Lagunas, M.A.: On the capacity of linear vector Gaussian channels with magnitude knowledge and phase uncertainty. In: 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, pp. IV–IV. France (2006). https://doi.org/10.1109/icassp.2006.1661031

  18. Dubrovin, A.V.: Potential direction-finding accuracy of systems with antenna arrays configured as a set of an arbitrary number of rings. J. Commun. Technol. Electron. 51, 252–254 (2006). https://doi.org/10.1134/S1064226906030028

    Article  Google Scholar 

  19. Henault, S., Antar, Y.M.M., Rajan, S., Inkol, R., Wang, S.: Impact of experimental calibration on the performance of conventional direction finders. In: 2009 Canadian Conference on Electrical and Computer Engineering, pp. 1123–1128. Canada (2009). https://doi.org/10.1109/ccece.2009.5090302

  20. Anikin, A.S., Denisov, V.P.: Estimation of the small sized radio direction finder errors in case of scattered signals. In: 2016 17th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), pp. 61–63. Russia (2016). https://doi.org/10.1109/EDM.2016.7538692

  21. Bogatyrev, V.A.: Exchange of duplicated computing complexes in fault-tolerant systems. Autom. Control Comput. Sci. 45, 268–276 (2011). https://doi.org/10.3103/S014641161105004X

    Article  Google Scholar 

  22. Sand, M., Potyra, S., Sieh, V.: Deterministic high-speed simulation of complex systems including fault-injection. In: 2009 IEEE/IFIP International Conference on Dependable Systems & Networks, pp. 211–216. Portugal (2009). https://doi.org/10.1109/dsn.2009.5270335

  23. Bosilca, G., Delmas, R., Dongarra, J., Langou, J.: Algorithm-based fault tolerance applied to high performance computing. J. Parallel Distrib. Comput. 69(4), 410–416 (2009). https://doi.org/10.1016/j.jpdc.2008.12.002

    Article  Google Scholar 

  24. Euillades, L.D., Euillades, P.A., Pepe, A., Blanco, M.H., Baron, J.H.: On the generation of late ERS deformation time series through small doppler and baseline subsets differential SAR interferograms. IEEE Geosci. Remote Sens. Lett. 8(2), 238–242 (2011). https://doi.org/10.1109/LGRS.2010.2060466

    Article  Google Scholar 

  25. Kuts, YuV: Measurement of cumulative phase shifts. Tekhnichna elektrodynamika 5, 67–72 (2001)

    Google Scholar 

  26. Kuts, V.Y., Kuts, Y.V.: Modular arithmetic application to calculate the azimuth for phase direction finder. Vistnyk NTUU KPI Seria – Radiotekhnika Radioaparatobuduvannia, vol. 64, pp. 23–32 (2016)

    Google Scholar 

  27. Xu, G.: On solving a generalized Chinese remainder theorem in the presence of remainder errors. In: Akbary, A., Gun, S. (eds.) Geometry, Algebra, Number Theory, and Their Information Technology Applications. GANITA 2016. Springer Proceedings in Mathematics & Statistics, vol. 251, pp. 461–476. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97379-1_21

  28. Kaya, K., Selcuk, A.A.: Robust threshold schemes based on the Chinese remainder theorem. In: Vaudenay, S. (eds.) Progress in Cryptology—AFRICACRYPT 2008. AFRICACRYPT 2008. Lecture Notes in Computer Science, vol. 5023, pp. 94–108. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9_7

  29. Wang, C., Yin, Q.Y., Wang, W.J.: An efficient ranging method based on Chinese remainder theorem for RIPS measurement. Sci. China Inform. Sci. 53, 1233–1241 (2010). https://doi.org/10.1007/s11432-010-0105-x

    Article  Google Scholar 

  30. Kasianchuk, M.N., Nykolaychuk, Y.N., Yakymenko, I.Z.: Theory and methods of constructing of modules system of the perfect modified form of the system of residual classes. J. Autom. Inform. Sci. 48(8), 56–63 (2016). https://doi.org/10.1615/JAutomatInfScien.v48.i8.60

    Article  Google Scholar 

  31. Omondi, A., Premkumar, B.: Residue Number Systems. Theory and Implementation, p. 296. Imperial College Press, London (2007)

    Book  Google Scholar 

  32. Eremenko, V., Zaporozhets, A., Isaenko, V., Babikova, K.: Application of wavelet transform for determining diagnostic signs. In: CEUR Workshop Proceedings, vol. 2387, pp. 202–214. http://ceur-ws.org/Vol-2387/20190202.pdf

  33. Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Methods and models for information data analysis. In: Diagnostic Systems for Energy Equipments. Studies in Systems, Decision and Control, vol. 281, pp. 23–70. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44443-3_2

  34. Morrassi, A., Vestroni, F.: Dynamic Methods for Damage Detection in Structures. Springer, Wien (2008). https://doi.org/10.1007/978-3-211-78777-9

  35. Kuts, Y.V., Lysenko, Y.Y., Dugin, A.L., Zakrevskii, A.F.: Analysis of an Eddy-current transducer with impulsive excitation in the nondestructive testing of cylindrical objects. materials science, pp. 431–437 (2016). https://doi.org/10.1007/s11003-016-9975-4

  36. Nataraj, C., Harsha, S.P.: The effect of bearing cage run-out on the nonlinear dynamics of a rotating shaft. Commun. Nonlinear Sci. Numer. Simul. 13(4), 822–838 (2008). https://doi.org/10.1016/j.cnsns.2006.07.010

    Article  Google Scholar 

  37. Yan, A.-M., Kerschen, G., De Boe, P., Golinval, J.-C.: Structural damage diagnosis under varying environmental conditions—part I: a linear analysis. Mech. Syst. Signal Process. 19(4), 847–864 (2005). https://doi.org/10.1016/j.ymssp.2004.12.002

    Article  Google Scholar 

  38. Kussul, N., Shelestov, A., Skakun, S.: Grid and sensor web technologies for environmental monitoring. Earth Sci. Inf. 2, 37–51 (2009). https://doi.org/10.1007/s12145-009-0024-9

    Article  Google Scholar 

  39. Kurzhanski, A.B., Khapalov, A.Y.: Mathematical problems motivated by environmental monitoring. IFAC Proc. Vols. 23(8), Part 5, 529–534 (1990). https://doi.org/10.1016/s1474-6670(17)51788-7

  40. Babak, S., Babak, V., Zaporozhets, A., Sverdlova, A.: Method of statistical spline functions for solving problems of data approximation and prediction of objects state. In: CEUR Workshop Proceedings, vol. 2353, pp. 810–821. http://ceur-ws.org/Vol-2353/paper64.pdf

  41. Zaporozhets, A., Babak, V., Isaienko, V., Babikova, K.: Analysis of the air pollution monitoring system in Ukraine. In: Systems, Decision and Control in Energy I. Studies in Systems, Decision and Control, vol. 298. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48583-2_6

  42. Liukkonen, M., Heikkinen, M., Hitunen, T., Halikka, E., Kuivalainen, R., Hiltunen, Y.: Artificial neural networks for analysis of process states in fluidized bed combustion. Energy 36(1), 339–347 (2011). https://doi.org/10.1016/j.energy.2010.10.033

    Article  Google Scholar 

  43. Babak, S., Myslovych, M., Sysak, R.: Module structure of UAV-based computerized systems for remote environment monitoring of energy facilities. In: 2016 17th International Conference Computational Problems of Electrical Engineering (CPEE), pp. 1–3. Poland (2016). https://doi.org/10.1109/cpee.2016.7738752

  44. Babak, S., Myslovych, M.: Practical application peculiarities of autonomous diagnostic complexes for thermal control of overhead power lines. Techn. Electrodyn. 1, 73–80 (2016). https://doi.org/10.15407/techned2016.01.073

    Article  Google Scholar 

  45. Zaporozhets, A., Kovtun, S., Dekusha, O.: System for monitoring the technical state of heating networks based on UAVs. In: Shakhovska N., Medykovskyy M.O. (eds.) Advances in Intelligent Systems and Computing IV. CSIT 2019. Advances in Intelligent Systems and Computing. Springer, Cham, pp. 935–950 (2020). https://doi.org/10.1007/978-3-030-33695-0_61

  46. Zaporozhets, A.O.: Correlation analysis between the components of energy balance and pollutant emissions. Water Air Soil Pollut. 232, 114 (2021). https://doi.org/10.1007/s11270-021-05048-9

  47. Zaporozhets, A.O., Khaidurov, V.V.: Mathematical models of inverse problems for finding the main characteristics of air pollution sources. Water Air Soil Pollut. 231, 563 (2020). https://doi.org/10.1007/s11270-020-04933-z

  48. Zaporozhets, A.: Review of quadrocopters for energy and ecological monitoring. In: Babak, V.P., Isaenko, V.M., Zaporozhets, A. (eds.) Systems, Decision and Control in Energy I, Studies in Systems, Decision and Control. Springer, Cham, pp. 15–36 (2020). https://doi.org/10.1007/978-3-030-48583-2_2

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babak, V.P. et al. (2021). Examples of Using Models and Measures on the Circle. In: Models and Measures in Measurements and Monitoring. Studies in Systems, Decision and Control, vol 360. Springer, Cham. https://doi.org/10.1007/978-3-030-70783-5_5

Download citation

Publish with us

Policies and ethics