Skip to main content

Models of Measuring Signals and Fields

  • Chapter
  • First Online:

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 360))

Abstract

The methodological aspects of the analysis of multidimensional signals and fields are highlighted. Mathematical models of measuring signals and fields are systematized, the main spatio-temporal models of quasi-determined signals are considered—continuous and discrete, complex-valued, periodic. Some facts of the theory of orthogonal signals and orthogonal bases are considered, the possibilities of their use for measurements are analyzed. Signal models that are described by random processes are considered. The definitions of a random process stationary in the broad and narrow sense of random processes, a linear random process, a harmonized random process, a periodically correlated random process are given. Models of multidimensional signals and spatio-temporal random fields are considered. Characteristics of signals and spatio-temporal random fields are given taking into account their structure for research by means of measuring equipment. It is concluded that the creation of hardware and information support for measurements and monitoring requires the coordination of physical and probabilistic measures to assess the characteristics of multidimensional signals and fields in accordance with the requirements of the concept of measurement uncertainty.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lauras, M., Marques, G., Gourc, D.: Towards a multi-dimensional project performance measurement system. Decis. Support Syst. 48(2), 342–353 (2010). https://doi.org/10.1016/j.dss.2009.09.002

    Article  Google Scholar 

  2. Bucci, G., Fiorucci, E., Landi, C.: Digital measurement station for power quality analysis in distributed environments. IEEE Trans. Instrum. Meas. 52(1), 75–84 (2003). https://doi.org/10.1109/TIM.2003.809080

    Article  Google Scholar 

  3. Wang, Y., Li, W., Lu, J.: Reliability analysis of wide-area measurement system. IEEE Trans. Power Delivery 25(3), 1483–1491 (2010). https://doi.org/10.1109/TPWRD.2010.2041797

    Article  Google Scholar 

  4. Sychev, I., Sycheva, I., Sobh, T., Elleithy, K., Mahmood, A. (eds.): Novel Algorithms and Techniques in Telecommunications and Networking. Springer, Berlin, pp. 201–206 (2010). https://doi.org/10.1007/978-90-481-3662-9_34

  5. Da Silva, E.R.C., dos Santos, E.C., Jacobina, B.: Pulsewidth modulation strategies. IEEE Ind. Electron. Mag. 5(2), 37–45 (2011). https://doi.org/10.1109/MIE.2011.941120

    Article  Google Scholar 

  6. Hirt, W.: Ultra-wideband radio technology: overview and future research. Comput. Commun. 26(1), 46–52 (2003). https://doi.org/10.1016/S1403-3664(02)00119-6

    Article  Google Scholar 

  7. Vigneshvar, S., Sudhakumari, C.C., Senthilkumaran, B., Prakash, H.: Recent advances in biosensor technology for potential applications—an overview. Front. Bioeng. Biotechnol. 4, 11 (2016). https://doi.org/10.3389/fbioe.2016.00011

    Article  Google Scholar 

  8. Arefin, Md.T., Ali, M.H., Haque, A.K.M.F.: Wireless body area network: an overview and various applications. J. Comput. Commun. 5(7), 53–64 (2017). https://doi.org/10.4236/jcc.2017.57006

    Article  Google Scholar 

  9. Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Methods and models for information data analysis. In: Diagnostic Systems For Energy Equipments. Studies in Systems, Decision and Control, vol. 281, pp. 23–70. Springer, Cham, (2020). https://doi.org/10.1007/978-3-030-44443-3_2

  10. Babak, V., Zaporozhets, A., Kuts, Y., Scherbak, L., Eremenko, V.: Application of material measure in measurements: theoretical aspects. In: Zaporozhets, A., Artemchuk, V. (eds.) Systems, Decision and Control in Energy II. Studies in Systems, Decision and Control. Springer, Cham, pp. 261–269 (2021). https://doi.org/10.1007/978-3-030-69189-9_15

  11. Mordachev, V.: Mathematical models for radio signals dynamic range prediction in space-scattered mobile radiocommunication networks. In: Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No. 00CH37152), pp. 904–911, USA, (2000). https://doi.org/10.1109/VETECF.2000.887131

  12. Marasanov, V., Sharko, A.: Mathematical models for interrelation of characteristics of the developing defects with the parameters of acoustic emission signals. Int. Front. Sci. Lett. 10, 37–44 (2016). https://doi.org/10.18052/www.scipress.com/IFSL.10.37

    Google Scholar 

  13. Eremenko, V., Zaporozhets, A., Babak, V., Isaienko, V., Babikova, K.: Using hilbert transform in diagnostic of composite materials by impedance method. Period. Polytech. Electr. Eng. Comput. Sci. 64(4), 334–342 (2020). https://doi.org/10.3311/PPee.15066

  14. Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Simulation and software for diagnostic systems. In: Diagnostic Systems For Energy Equipments. Studies in Systems, Decision and Control, vol. 281, pp. 71–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44443-3_3

  15. Bruckner, T., Holmes, D.G.: Optimal pulse-width modulation for three-level inverters. IEEE Trans. Power Electron. 20(1), 82–89 (2005). https://doi.org/10.1109/TPEL.2004.839831

    Article  Google Scholar 

  16. Zaporozhets, A.O.: Correlation analysis between the components of energy balance and pollutant emissions. Water Air Soil Pollut. 232, 114 (2021). https://doi.org/10.1007/s11270-021-05048-9

  17. Isermann, R., Munchhof, M.: Mathematical models of linear dynamic systems and stochastic signals. In: Identification of Dynamic Systems, pp. 33–74. Springer, Berlin (2010). https://doi.org/10.1007/978-3-540-78879-9_2

  18. Simani, S., Fantuzzi, C., Patton, R.J.: Model-based fault diagnosis techniques. In: Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques. Advances in Industrial Control, pp. 19–60. Springer, London (2003). https://doi.org/10.1007/978-1-4471-3829-7_2

  19. Narytnyk, T.: Telecommunication system construction principles for radio communication in the terahertz frequency range on the harmonic technology signal as a information carrier basis. In: 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), Ukraine, pp. 771–776 (2018). https://doi.org/10.1109/INFOCOMMST.2018.8632041

  20. Babak, V., Eremenko, V., Zaporozhets, A.: Research of diagnostic parameters of composite materials using Johnson distribution. Int. J. Comput. 18(4), 483–494 (2019)

    Article  Google Scholar 

  21. Moradi, L., Mohammadi, F.: A comparative approach for time-delay fractional optimal control problems: discrete versus continuous Chebyshev polynomials. Asian J. Control 22(1), 204–216 (2020). https://doi.org/10.1002/asjc.1858

    Article  MathSciNet  Google Scholar 

  22. Carrol, M.T., Rykken, E.: The involutory Laguerre transition matrix. Math. Maga. 92(1), 19–23 (2019). https://doi.org/10.1080/0025570X.2019.1541688

    Article  MathSciNet  MATH  Google Scholar 

  23. Izadi, M.: A comparative study of two Legendre-collocation schemes applied to fractional logistic equation. Int. J. Appl. Comput. Math. 6, 71 (2020). https://doi.org/10.1007/s40819-020-00823-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Makarov, V., Gaponenko, V., Toporov, B., Kupriyanov, A.: Theoretical and applied aspects of orthogonal coding in computer networks technologies. In: Kravets, A. (eds.) Big Data-Driven World: Legislation Issues and Control Technologies. Studies in Systems, Decision and Control, vol. 181, pp. 47–58. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01358-5_5

  25. Kim, T., Kim, D.S., Kwon, J., Dolgy, D.V.: Expressing sums of finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials by several orthogonal polynomials. Mathematics 6(10), 210 (2018). https://doi.org/10.3390/math6100210

    Article  Google Scholar 

  26. Yafaev, D.R.: A point interaction for the discrete Schrödinger operator and generalized Chebyshev polynomials. J. Math. Phys. 58, 063511 (2017). https://doi.org/10.1063/1.4986414

    Article  MathSciNet  MATH  Google Scholar 

  27. Selezov, I.T.: Some analytical and numerical methods in the theory of wave propagation and diffraction. In: Wave Propagation and Diffraction. Foundations of Engineering Mechanics, pp. 1–24. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-4923-1_1

  28. Wang, M.-L., Chang, R.-Y., Yang, S.-Y.: Generalization of generalized orthogonal polynomial operational matrices for fractional and operational calculus. Int. J. Syst. Sci. 18(5), 931–943 (1987). https://doi.org/10.1080/00207728708964020

    Article  MATH  Google Scholar 

  29. Sapehrian, B., Razzaghi, M.: Single-term Walsh series method for the Volterra integro-differential equations. Eng. Anal. Boundary Elem. 28(11), 1315–1319 (2004). https://doi.org/10.1016/j.enganabound.2004.05.001

    Article  MATH  Google Scholar 

  30. Shaffer, D., Lorson, P., Plunkett, Z., Ragai, I., Danesh-Yazdi, A., Ashour, O.: Development of experiment-based mathematical models of acoustic signals for machine condition monitoring. Proc. CIRP 72, 1316–1320 (2018). https://doi.org/10.1016/j.procir.2018.03.269

    Article  Google Scholar 

  31. Averina, T., Karachanskaya, E., Rybakov, K.: Statistical modeling of random processes with invariants. In: 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), Russia, pp. 34–37 (2017). https://doi.org/10.1109/SIBIRCON.2017.8109832

  32. Deutsch, R.: Nonlinear Transformations of Random Processes. Courier Dover Publications (2017)

    Google Scholar 

  33. Atamanyuk, I.P., Kondratenko, V.Y., Kozlov, O.V., Kondratenko, Y.P.: The algorithm of optimal polynomial extrapolation of random processes. In: Engemann, K.J., Gil-Lafuente, A.M., Merigó, J.M. (eds.) Modeling and Simulation in Engineering, Economics and Management. MS 2012. Lecture Notes in Business Information Processing, vol. 115, pp. 78–87. Springer, Berlin, Heidelberg (2012). doi: https://doi.org/10.1007/978-3-642-30433-0_9

  34. Chang, R.-Y., Yang, S.-Y., Wang, M.-L.: Solutions of linear dynamic systems by generalized orthogonal polynomials. Int. J. Syst. Sci. 17(12), 1727–1740 (1986). https://doi.org/10.1080/00207728608926920

    Article  MATH  Google Scholar 

  35. Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009). https://doi.org/10.1109/MSP.2008.930649

    Article  Google Scholar 

  36. Ioannidis, K., Andreadis, I.: A digital image stabilization method based on the Hilbert-Huang transform. IEEE Trans. Instrum. Meas. 61(9), 2446–2457 (2012). https://doi.org/10.1109/TIM.2012.2188618

    Article  Google Scholar 

  37. Fu, D., Shi, Y.Q., Su, W.: Detection of image splicing based on Hilbert-Huang transform and moments of characteristic functions with wavelet decomposition. In: Shi, Y.Q., Jeon, B. (eds.) Digital Watermarking. IWDW 2006. Lecture Notes in Computer Science, vol. 4283, pp. 177–187. Springer, Berlin (2006). https://doi.org/10.1007/11922841_15

  38. Shih, D.-H., Kung, F.-C., Chao, C.-M.: Laguerre series approach to the analysis of a linear control system incorporating observers. Int. J. Control 43(1), 123–128 (1986). https://doi.org/10.1080/00207178608933452

    Article  MATH  Google Scholar 

  39. Sambariya, D.K., Prasad, R.: Optimal tuning of fuzzy logic power system stabilizer using harmony search algorithm. Int. J. Fuzzy Syst. 17, 457–470 (2015). https://doi.org/10.1007/s40815-015-0041-4

    Article  Google Scholar 

  40. Horvatic, D., Stanley, H.E., Podobnik, B.: Detrended cross-correlation analysis for non-stationary time series with periodic trends. EPL 91(1), 18007. https://doi.org/10.1209/0295-5075/94/18007

  41. Jacobina, C.B., Nogueira Lima, A.M., da Silva, E.R.C., Alves, R.N.C., Seixas, P.F.: Digital scalar pulse-width modulation: a simple approach to introduce nonsinusoidal modulating waveforms. IEEE Trans. Power Electron. 16(3), 351–359 (2001). https://doi.org/10.1109/63.923767

  42. Loh, P.C., Vilathgamuwa, D.M., Lai, Y.S., Chua, G.T., Li, Y.: Pulse-width modulation of Z-source inverters. In: Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting, USA, p. 155 (2004). https://doi.org/10.1109/IAS.2004.1348401

  43. Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., Aigrain, S.: Gaussian processes for time-series modeling. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 371, 20110550 (1984). https://doi.org/10.1098/rsta.2011.0550

    Article  MATH  Google Scholar 

  44. Radosavljevic, V., Vucetic, S., Obradovic, Z.: Neural Gaussian conditional random fields. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2014. Lecture Notes in Computer Science, vol. 8725, pp. 614–629. Springer, Berlin (2014). https://doi.org/10.1007/978-3-662-44851-9_39

  45. De Iaco, S., Posa, D.: Predicting spatio-temporal random fields: some computational aspects. In: Predicting Spatio-Temporal Random Fields: Some Computational Aspects. Computers & Geosciences, vol. 41, pp. 12–24 (2012). https://doi.org/10.1016/j.cageo.2011.11.014

  46. Wikle, C.K., Hooten, M.B.: A general science-based framework for dynamical spatio-temporal models. TEST 19, 417–451 (2010). https://doi.org/10.1007/s11749-010-0209-z

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babak, V.P. et al. (2021). Models of Measuring Signals and Fields. In: Models and Measures in Measurements and Monitoring. Studies in Systems, Decision and Control, vol 360. Springer, Cham. https://doi.org/10.1007/978-3-030-70783-5_2

Download citation

Publish with us

Policies and ethics