Skip to main content

Dosimetry and Dose Calculation: Its Necessity in Radiopeptide Therapy

  • Chapter
  • First Online:
Liver Intra-arterial PRRT with 111In-Octreotide
  • 254 Accesses

Abstract

Target radionuclide therapy is an effective modality for treating a range of cancers. The therapeutic agent can be administered to patients in many ways such as intravenous (i.v.), oral, locoregional, intra-arterial (i.a.), or even more direct by intratumorally injection. Each method has certain advantages and restrictions in order to deliver lethal dose of radiation to tumors, by a variety of radionuclides attached to agents, such as peptides or even antibodies. Nowadays, this lethal or sublethal dose to cancer cells can be delivered directly, as, for example, by short-range beta, Auger, or alpha particles, or indirectly by the bystander effect. Personalized dosimetry is a useful tool from the patient-specific point of view enhancing therapeutic effectiveness, so as tumor may receive the highest absorbed dose providing favorable tumor-to-normal tissue ratios, sparing thus the critical organs from radiation burden.

Radiation dose calculations depend on the quantification imaging system (planar or tomographic), the quantification standardization procedures employing phantoms, the acquired patient images, or the simulated ones by Monte Carlo methods. Currently, the accuracy of personalized dosimetry is still limited by many uncertainties and limitations. Planar or SPECT quantification may improve patient outcomes as a result of dosimetry. It can assess the tumor response to radiation, healthy tissue toxicity, treatment planning, and decision to continue or modify the therapy.

The scope of this chapter is to develop an overview of [111In] In+ dosimetry with emphasis on conventional radionuclide imaging methods. The selection of [111In] In+ for infusion to an individual patient requires understanding of the strengths and potential limitations of this Auger emitter, in the field of PRRT therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CSDA:

Continuous Slowing Down Approximation

CT:

Computed Tomography

D:

Dimensional

DPK:

Dose Point Kernels

DVH:

Dose Volume Histograms

EBRT:

External Beam Radiation Therapy

EGS:

Electron Gamma Shower

i.a:

Intra-arterial

i.v.:

Intravenous

IC:

Internal Conversion

ICRP:

International Commission on Radiological Protection

ICRU:

International Commission on Radiation Units

LET:

Linear Energy Transfer

MC:

Monte Carlo

MCNP:

Monte Carlo N-Particle Transport code

MIRD:

Medical Internal Radiation Dose

MRI:

Magnetic Resonance Imaging

OAR:

Organs at Risk

p.i.:

Post injection

PD:

Progression Death

PET:

Positron Emission Tomography

PR:

Partial Response

PRRT:

Peptide Receptor Radionuclide Therapy

R:

Range

RBE:

Relative Biological Effect

RECIST:

Response Evaluation Criteria in Solid Tumors

RILD:

Radiation-Induced Liver Disease

ROI:

Region of Interest

SD:

Stable Disease

SPECT:

Single Photon Emission Tomography

t1/2:

Half-Life

TAC:

Time-Activity Curves

TD:

Tolerance Doses

US:

Ultrasound

VOI:

Volume of Interest

References

  1. Bolliger A, Inglis K. Experimental liver disease produced by X-ray irradiation of the exposed organ. J Pathol. 1933;36:19–30.

    Article  Google Scholar 

  2. Dawson LA, Lawrence TS. The role of radiotherapy in the treatment of liver metastases. Cancer J. 2004;10:139–44.

    Article  Google Scholar 

  3. Dawson LA, Ten Haken RK. Partial volume tolerance of the liver to radiation. Semin Radiat Oncol. 2005;15:279–83.

    Article  Google Scholar 

  4. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.

    Article  CAS  Google Scholar 

  5. Reubi JC, Maurer R. Autoradiographic mapping of somatostatin receptors in the rat central nervous system and pituitary. Neuroscience. 1985;15(4):1183–93.

    Article  CAS  Google Scholar 

  6. Krenning EP, Kwekkeboom DJ, Bakker WH, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. J Nucl Med. 1993;20:716–31.

    Google Scholar 

  7. IAEA Radioisotopes and radiopharmaceutical series No.5. Yttrium-90 and Rhenium-188 radiopharmaceuticals for radionuclide therapy.

    Google Scholar 

  8. Limouris GS, Chatziioannou A, Kontogeorgakos D, et al. Selective hepatic arterial infusion of In-111-DTPA-Phe1-octreotide in neuroendocrine liver metastases. Eur J Nucl Med Mol Imaging. 2008;35:1827–37.

    Google Scholar 

  9. Limouris GS, Karfis I, Chatziioannou A, et al. Super-selective hepatic arterial infusions as established technique (‘Aretaieion’ protocol) of 177 Lu DOTA-TATE inoperable neuroendocrine liver metastases of gastro-entero-pancreatic tumors. Q J Nucl Med Mol Imaging. 2012;56:551–8.

    CAS  PubMed  Google Scholar 

  10. Dash A, Chakraborty S, Pillai MRA, et al. Peptide receptor radionuclide therapy: an overview. Cancer Biother Radiopharm. 2015;30(2):47–71.

    Google Scholar 

  11. Laboratoire National Henri Becquerel. http://www.nucleide.org/DDEP_WG/DDEPdata.htm.

  12. Cole A. Absorption of 20-eV to 50,000-eV electron beams in air and plastic. Radiat Res. 1969;38:7–33.

    Article  CAS  Google Scholar 

  13. International Commission on Radiation Units and Measurements. Stopping powers for electrons and positrons, Report 37. Bethesda: International Commission on Radiation Units and Measurements; 1984. p. 1–271.

    Google Scholar 

  14. IAEA: “Technical Report Series no 468” Cyclotron produced radionuclides: physical characteristics and production methods.

    Google Scholar 

  15. Krenning EP, Kooij PP, Bakker WH, et al. Radiotherapy with a radiolabeled somatostatin analogue [111In-DTPA-D-Phe1] octreotide. A case history. Ann N Y Acad Sci. 1994;733:490–506.

    Google Scholar 

  16. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2016;376:125–35.

    Article  Google Scholar 

  17. Loevinger R, Berman M. A “Schema for absorbed-dose calculations for bio-logically-distributed radionuclides” MIRD Pamphlet No. 1. New York: Society of Nuclear Medicine; 1968.

    Google Scholar 

  18. Loevinger R, Berman M. A revised schema for calculating the absorbed dose from biologically distributed radionuclides. MIRD Pamphlet No. 1. Revised. New York: Society of Nuclear Medicine; 1976.

    Google Scholar 

  19. Cristy M, Eckerman K. Specific absorbed fractions of energy at various ages from internal photon sources. ORNL/TM-8381 V1-V7. Oak Ridge: Oak Ridge National Laboratory; 1987.

    Book  Google Scholar 

  20. Stabin MG, Watson EE, Cristy M, et al. Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy. ORNL/T-12907. Oak Ridge: Oak Ridge National Laboratory; 1995.

    Book  Google Scholar 

  21. Coffey JL, Cristy M, Warner GG. Specific absorbed fractions for photon sources uniformly distributed in the heart chambers and heart wall of a heterogeneous phantom. J Nucl Med. 1981;22(1):65–71.

    CAS  PubMed  Google Scholar 

  22. Thomas SR, Stabin MG, Chen CT, et al. MIRD pamphlet No.14 revised: “a dynamic urinary bladder model for radiation dose calculations” Task Group of the MIRD Committee, Society of Nuclear Medicine. J Nucl Med. 1999;40(4):102S–23S.

    Google Scholar 

  23. Bouchet LG, Bolch WE, Weber DA, et al. MIRD pamphlet No.15 “Radionuclide S values in a revised dosimetric model of the adult head and brain”. J Nucl Med. 1999;40(3):62S–101S.

    Google Scholar 

  24. Bouchet LG, Bolch WE, Blanco HP, et al. MIRD pamphlet No.19 “Absorbed fractions and radionuclide S values for six age-dependent multiregional models of the kidney”. J Nucl Med. 2003;44(7):1113–47.

    PubMed  Google Scholar 

  25. Snyder W, Ford M, Warner G. “Estimates of specific absorbed fractions for photon sources uniformly distributed in various organ of heterogeneous phantom” MIRD pamphlet No.5 revised. New York: Society of Nuclear Medicine; 1978.

    Google Scholar 

  26. Snyder WS, Ford MR, Warner GG, et al. “S”, absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD pamphlet No.11. New York: The Society of Nuclear Medicine; 1975.

    Google Scholar 

  27. Stabin MG, Sparks RB, Crove E. OLINDA/EXM: the second-generation computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46(6):1023–7.

    PubMed  Google Scholar 

  28. www.doseinfo-radar.com.

  29. Bolch WE, Bouchet LG, Robertson JS, et al. MIRD pamphlet No.17 “the dosimetry of nonuniform activity distributions—radionuclide S values at the voxel level”. J Nucl Med. 1999;40(1):11S–36S.

    CAS  PubMed  Google Scholar 

  30. Bolch WE, Eckerman KF, Sgouros G, et al. MIRD Pamphlet No.21: a generalized schema for radiopharmaceutical dosimetry-standardization of nomenclature. J Nucl Med. 2009;50:477–84.

    Google Scholar 

  31. Stabin MG. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 1996;37(3):538–46.

    CAS  PubMed  Google Scholar 

  32. Siegel J, Stabin MG. Absorbed fractions for electrons and beta particles in spheres of various sizes. J Nucl Med. 1994;35:152–6.

    CAS  PubMed  Google Scholar 

  33. Stabin MG, Konijnenberg MW. Re-evaluation of absorbed fractions for photons and electrons in spheres of various sizes. J Nucl Med. 2000;41(1):149–60.

    CAS  PubMed  Google Scholar 

  34. Berger MJ. MIRD Pamphlet no 7—Distribution of absorbed dose around point sources of electrons and beta particles in water and other media. J Nucl Med. 1971;(Suppl 5):5–23.

    Google Scholar 

  35. Berger MJ. Improved point kernel for electrons and beta-ray dosimetry. Washington, DC: Atomic Energy Commission; 1973.

    Book  Google Scholar 

  36. Lanconelli N, Pacilio M, Lo Meo S, et al. A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions. Phys Med Biol. 2012;57:517–33.

    Article  CAS  Google Scholar 

  37. Amato E, Minutoli F, Pacilio M, et al. An analytical method for computing voxel S values for electrons and photons. Med Phys. 2012;39:6808–17.

    Google Scholar 

  38. Kawrakow I, Rogers DWO. “The EGSnrc code system: Monte Carlo simulation of electron and photon transport” Report PIRS-701. National Research Council of Canada; 2003.

    Google Scholar 

  39. Briesmeister JF. “MCNPTM—a general Monte Carlo N-particle transport code”, version 4C Report LA–13709–M. Los Alamos: Los Alamos National Laboratory; 2000.

    Google Scholar 

  40. Agostinelli S, Allison J, Amako K, et al. G4–a simulation toolkit. Nucl Instr Meth Phys Res Sect A. 2003;506:250–303.

    Google Scholar 

  41. Gear JI, Cox MG, Gustafsson J, et al. EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations. EJNMMI. 2018;45:2456–74.

    Google Scholar 

  42. Siegel JA, Wessels BW, Watson EE, et al. Bone marrow dosimetry and toxicity for radioimmunotherapy. Antibody Immunoconjugate Radiopharm. 1990;3:213–33.

    Google Scholar 

  43. Siegel J, Thomas S, Stubbs J, et al. MIRD pamphlet No.16: techniques for Quantitative biodistribution Data Acquisition and Analysis for use in Human Radiation Dose Estimates. J Nucl Med. 1999;4:37S–61S.

    Google Scholar 

  44. Buijs WCAM, Siegel JA, Boerman OC, et al. Absolute organ activity estimated by five different methods of background correction. J Nucl Med. 1998;39:2167–72.

    Google Scholar 

  45. Shen S, DeNardo GL, Sgouros G, et al. Practical determination of patient specific marrow dose using radioactivity concentration in blood and body. J Nucl Med. 1999;4:2102–6.

    Google Scholar 

  46. Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med. 1993;34:689–94.

    CAS  PubMed  Google Scholar 

  47. Pereira JM, Stabin MG, Lima FRA, et al. Image quantification for radiation dose calculations-limitations and uncertainties. Health Phys. 2010;99(5):688–701.

    Google Scholar 

  48. Forrer F, Krenning EP, Kooij PP, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with 177 Lu-DOTA 0. Tyr3 octreotate. Eur J Nucl Med Mol Imaging. 2009;36:1138–46.

    Article  CAS  Google Scholar 

  49. Lassman M, Chiesa C, Flux G, et al. EANM Dosimetry Committee guidance document good practice of clinical dosimetry. Eur J Nucl Med Mol Imaging. 2011;38(1):192–200.

    Google Scholar 

  50. ICRU Report 67, 2002, Absorbed dose specification in nuclear medicine.

    Google Scholar 

  51. Forrer F, Uusijarvi H, Storch D, et al. Treatment with 177Lu-DOTA-TOC of patients with relapse of neuroendocrine tumors after treatment with 90Y-DOTATOC. J Nucl Med. 2005;46:1310–6.

    CAS  PubMed  Google Scholar 

  52. Fischer DR, Shen S, Meredith RF. MIRD Dose Estimate Report No. 20: radiation absorbed—dose estimates for 111In- and 90Y-ibritumomab tiuxetan. J Nucl Med. 2009;50:644–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

ICRP 89

 

ICRP 89 Adult Male

ICRP 89 15-year-old Male

ICRP 89 Adult Female

ICRP 89 15-year-old Female

RPI ICRP 89 9 month Pregnant Woman

 

RPI ICRP 89 6 month Pregnant Woman

 

RPI ICRP 89 3 month Pregnant Woman

 
 

ICRP 89 10-year-old Male

 

ICRP 89 10-year-old Female

 

ICRP 89 5-year-old Male

 

ICRP 89 5-year-old Female

ICRP 89 Newborn Male

 

ICRP 89 Newborn Female

 
Table 12.8 Decay data of [111In] In+ (from Fisher et al.) [52]

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paphiti, M.I. (2021). Dosimetry and Dose Calculation: Its Necessity in Radiopeptide Therapy. In: Limouris, G.S. (eds) Liver Intra-arterial PRRT with 111In-Octreotide. Springer, Cham. https://doi.org/10.1007/978-3-030-70773-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70773-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70772-9

  • Online ISBN: 978-3-030-70773-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics