Skip to main content

Dual-Band Rectangular Microstrip Patch Antenna with CSRR for 28/38 GHz Bands Applications

  • Conference paper
  • First Online:
Innovative Systems for Intelligent Health Informatics (IRICT 2020)

Abstract

This paper presents a dual-band microstrip patch antenna operating at 28/38 GHz bands used in 5G mobile networks. The proposed structure is integrated to a Rogers RT/duroid 5880 substrate material with a relative permittivity of 2.2, height of 0.6 mm and loss tangent of 0.0009. To get dual resonance and hence an enhanced bandwidth, two square-shaped Complementary Split Ring Resonators (CSRR) are etched, one on the radiating patch and the other on the ground plane. The structure is compact with an overall size of 7 mm × 7 mm × 0.6 mm. Simulation shows that, the patch is operating at two frequency bands. The first band, centered around 28 GHz has a bandwidth of 1.94 GHz while the second band is 4.8 GHz bandwidth around the 38 GHz resonant frequency. The peak gains obtained are 8 dBi and 8.75 dBi at the resonant frequencies respectively. The designed antenna shows low profile, good gain and bandwidth efficient. These characteristics make the patch suitable for mm-waves 5G applications. The antenna is designed and simulated using the High Frequency Structure Simulator (HFSS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El Misilmani, H.M., El-Hajj, A.M.: Massive MIMO design for 5G networks: an overview on alternative antenna configurations and channel model challenges. In: International Conference on High Performance Computing & Simulation (HPCS), pp. 288–294. IEEE (2017)

    Google Scholar 

  2. Al-Turjman, F., Ever, E., Zahmatkesh, H.: Small cells in the forthcoming 5G/IoT: traffic modelling and deployment overview. IEEE Commun. Surv. Tutor. 21(1), 28–65 (2018)

    Article  Google Scholar 

  3. Sulyman, A.I., Nassar, A.T., Samimi, M.K., MacCartney, G.R., Rappaport, T.S., Alsanie, A.: Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Commun. Mag. 52(9), 78–86 (2014)

    Article  Google Scholar 

  4. Bicer, M.B.: A novel coplanar waveguide-fed compact microstrip antenna for future 5G applications. Tehnički glasnik 14(2), 104–110 (2020)

    Article  Google Scholar 

  5. Wang, C.X., Haider, F., Gao, X., You, X.H., Yang, Y., Yuan, D., Hepsaydir, E.: Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)

    Article  Google Scholar 

  6. Singh, C., Kumawat, G.A.: Compact rectangular ultra-wideband microstrip patch antenna with double band notch feature at Wi-Max and WLAN. Wirel. Pers. Commun. 114, 2063–2077 (2020)

    Article  Google Scholar 

  7. Keum, K., Choi, J.: A 28 GHz 4 × 4 U-slot patch array antenna for mm-wave communication. In: International Symposium on Antennas and Propagation (ISAP), pp. 1–2. IEEE (2018)

    Google Scholar 

  8. Zhang, G., Pu, S., Xu, X., Liu, Y., Wang, C.: Design of 60-GHz microstrip antenna array composed through circular contour feeding line. In: Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), pp. 1010–1013. IEEE (2016)

    Google Scholar 

  9. Selvaraju, R.R., Kamarudin, M.R., Jamaluddin, M.H., Dahri, M.H., Low, C.Y.: Compact 4-element beam steerable printed adaptive array antenna for 5G application. In: IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), pp. 30–33. IEEE (2016)

    Google Scholar 

  10. Gaid, A.S., Qaid, O.A., Alhakimi, A.M.: Microstrip antennas for next genertion wireless devices. In: First International Conference of Intelligent Computing and Engineering (ICOICE), pp. 1–4. IEEE Hadhramout (2019)

    Google Scholar 

  11. Gou, Y., Yang, S., Zhu, Q., Nie, Z.: A compact dual-polarized double E-shaped patch antenna with high isolation. IEEE Trans. Antennas Propag. 61(8), 4349–4353 (2013)

    Article  Google Scholar 

  12. Balanis, C.A.: Antenna Theory: Analysis and Design, 4th edn. John Wiley & Sons, Hoboken (2016)

    Google Scholar 

  13. Ramli, N., Noor, S.K., Khalifa, T., Abd Rahman, N.H.: Design and performance analysis of different dielectric substrate based microstrip patch antenna for 5g applications. Int. J. Adv. Comput. Sci. Appl. 11(8), 77–83 (2020)

    Google Scholar 

  14. Abdelgwad, A.H.: Microstrip patch antenna enhancement techniques. Int. J. Electron. Commun. Eng. 12(10), 703–708 (2018)

    Google Scholar 

  15. Gaid, A.S.A., Qaid, O.A.S., Ameer, M.A.A., Qaid, F.F.M., Ahmed, B.S.A.: Small and bandwidth efficient multi-band microstrip patch antennas for future 5G communications. In: Saeed, F., Mohammed, F., Gazem, N. (eds.) IRICT 2019, Advances in Intelligent Systems and Computing, vol. 1073, pp. 653–662. Springer, Cham (2019)

    Google Scholar 

  16. Gaid, A.S.A., Alhakimi, A.M.A., Saeed, O.Y.A., Alasadee, M.S., Ali, A.A.: Compact and bandwidth efficient multi-band microstrip patch antennas for 5G applications. In: Saeed, F., Mohammed, F., Gazem, N. (eds.) IRICT 2019, Advances in Intelligent Systems and Computing, vol. 1073, pp. 663–672. Springer, Cham (2019)

    Google Scholar 

  17. Muhammad, S., Yaro, A.S., Ya’u, I., Abubakar, A.S.: Design of single feed dual-band millimeter wave antenna for future 5G wireless applications. Sci. World J. 14(1), 84–87 (2019)

    Google Scholar 

  18. Farooq, U., Rather, G.M.: Design and analysis of dual band microstrip antenna for millimeter wave communication applications. Int. J. Comput. Dig. Syst. 9(4), 607–614 (2020)

    Article  Google Scholar 

  19. Sharma, S.K., Rattan, M.: Analysis of broad banding and minimization techniques for square patch antenna. IETE J. Res. 56(2), 88–93 (2010)

    Article  Google Scholar 

  20. Khattak, M.I., Sohail, A., Khan, U., Barki, Z., Witjaksono, G.: Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks. Prog. Electromagnet. Res. 89, 33–147 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaid, A.S.A., Qasem, M.H.M., Sallam, A.A., Shayea, E.Q.M. (2021). Dual-Band Rectangular Microstrip Patch Antenna with CSRR for 28/38 GHz Bands Applications. In: Saeed, F., Mohammed, F., Al-Nahari, A. (eds) Innovative Systems for Intelligent Health Informatics. IRICT 2020. Lecture Notes on Data Engineering and Communications Technologies, vol 72. Springer, Cham. https://doi.org/10.1007/978-3-030-70713-2_65

Download citation

Publish with us

Policies and ethics