Skip to main content

Surface Preparation

  • Chapter
  • First Online:
Thermal Spray Fundamentals

Abstract

Thermal spray coating starts with proper surface preparation, which is an essential and critical operation on which the quality of the coating and its adhesion to the substrate strongly depend. The coating material and the nature of the substrate are the major factors in determining what kind of surface preparation is necessary to achieve optimal bonding. Substrate surface preparations comprise essentially of; machining of the part to its final dimensions, cleaning the surface, masking to prevent deposit formation on areas that are not to be coated, surface roughening followed by final cleaning. It is also important to keep in mind that the coating must never end abruptly at the part extremity and that surface preparation should be done as close as possible to the timing of the spraying operation to avoid the deterioration of the quality of the prepared surface. In this chapter, following a brief review of the surface preparation, attention is given to different technologies currently used for the cleaning and surface roughening steps, including grit blasting, high pressure water roughening, and laser treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

Two-Dimensional

3-D:

Three-Dimensional

AWJ:

Abrasive Water Jetting

BS:

Bond Strength

CS:

Cold Spray

DC:

Direct Current

DC-APS:

DC-Atmospheric Plasma Spraying

FS:

Flame Spraying

HA:

Hydroxyapatite

i.d.:

internal diameter

LHS:

Left-Hand Side

MEK:

Methyl-ethyl-ketone

PSD:

Particle Size Distribution

PTA:

Plasma Transferred Arc

RF:

Radio Frequency

RF-IPS:

RF-Induction Plasma Spraying

RHS:

Right-Hand Side

SMT:

Surface Modification Technologies

WAS:

Wire Arc Spraying

References

  • Abukawa, S., K. Kobayashi, and Y. Kobayashi. 2006. The relationship of work distortion and surface roughness on grit blasting process. In TS-2006, ed. B. Marple et al. Materials Park: ASM International.

    Google Scholar 

  • Al-Kindi, G.A., and B. Shirinzadeh. 2007. An evaluation of surface roughness parameters measurement using vision-based data. International Journal of Machine Tools and Manufacture 47: 697–708.

    Article  Google Scholar 

  • Amada, A., and T. Hirose. 2000. Planar fractal characteristics of blasted surfaces and its relationship with adhesion strength of coatings. Surf Coat Technol 130: 158–163.

    Article  CAS  Google Scholar 

  • Amada, S., and A. Satoh. 2000. Fractal analysis of surface roughened by grit blasting. Journal of Adhesion Science and Technology 14 (1): 27–41.

    Article  CAS  Google Scholar 

  • Amada, Shigeyasu, and Hiroshi Yamada. 1996. Introduction of fractal dimension to adhesive strength evaluation of plasma-sprayed coatings. Surface and Coatings Technology 78: 50–55.

    Article  CAS  Google Scholar 

  • Amada S., T. Hirose, and T. Senda (1999) Quantitative evaluation of residual grits under angled blasting, Surface and Coatings Technology 111 1–9.

    Google Scholar 

  • ASM Handbook. 1994. Volume 05: Surface Engineering (1056 pages).

    Google Scholar 

  • ASM Metals Handbook. 1964. ASM International, Materials Park, OH 44073–0002, USA.

    Google Scholar 

  • Bacova, V., and D. Draganovska. 2004. Analysis of the quality of blasted surfaces. Materials Science 40 (1): 125–131.

    Article  Google Scholar 

  • Bahbou, F., and P. Nylen. 2005. Relationship between surface topography parameters and adhesion strength for plasma spraying. In ITSC-2005, ed. E. Lugscheider. Düsseldorf: DVS.

    Google Scholar 

  • Bahbou, M.F., P. Nylen, and J. Wigren. 2004a. Effect of grit blasting and spraying angle on the adhesion strength of a plasma-sprayed coating. Journal of Thermal Spray Technology 13 (4): 508–514.

    Article  Google Scholar 

  • Bahbou, F., P. Nylen, and G. Barbezat. 2004b. A parameter study of the PROTAL® process to optimize the adhesion of Ni5Al coatings. In ITSC-2004. Düsseldorf: DVS.

    Google Scholar 

  • Bardi, U., L. Carrafiello, R. Groppetti, F. Niccolai, G. Rizzi, A. Scrivani, and F. Tedeschi. 2004. On the surface preparation of nickel superalloys before CoNiCrAlY deposition by thermal spray. Surface and Coatings Technology 184: 156–162.

    Article  CAS  Google Scholar 

  • Bellmann, R., and A. Levy. 1981. Erosion mechanism in ductile metals. Wear 70: 1–27.

    Article  Google Scholar 

  • Bradley, C. 2000. Automated surface roughness measurement. International Journal of Advanced Manufacturing Technology 16: 668–674.

    Article  Google Scholar 

  • Cedelle, J., M. Vardelle, and P. Fauchais. 2006. Influence of stainless-steel substrate preheating on surface topography and on millimeter- and micrometer-sized splat formation. Surface and Coatings Technology 201 (3–4): 1373–1382.

    Article  CAS  Google Scholar 

  • Celik, E., A.S. Demirkiran, and E. Avei. 1999. Effect of grit blasting of substrate on the corrosion behavior of plasma sprayed Al2O3 coatings. Surface and Coatings Technology 116–119: 1061–1064.

    Article  Google Scholar 

  • Coddet, C., and T. Marchione. 1993. Process for the preparation and coating a surface and apparatus for practicing sand process (in French), French patent FR-9,209,277, July 21st., (1993).

    Google Scholar 

  • ———. 1997a. Process for the preparation and coating a surface and apparatus for practicing sand process, European patent extension EP-0,580,534-A1 April 23rd. (1997).

    Google Scholar 

  • ———. 1997b. Process for the preparation and coating a surface and apparatus for practicing sand process, US patent extension, US-5,668,564, Nov 18th. (1997).

    Google Scholar 

  • ———. 1999. Process for the preparation and coating a surface and apparatus for practicing sand process, Canadian patent extension, CA-2,101,004 July 13th., (1999).

    Google Scholar 

  • Coddet, G., S. Montavon, O. Ayrault-Costil, F. Freneaux, G. Rigolet, F. Barbezte, A. Diard Folio, and P. Wazen. 1999. Surface preparation and thermal spray in a single step: The PROTAL process-example of application for an aluminium-base substrate. Journal of Thermal Spray Technology 8 (2): 235–242.

    Article  CAS  Google Scholar 

  • Conroy, M., et al. 2005. A comparison of surface metrology techniques. Journal of Physics Conference Series 13: 458–465.

    Article  Google Scholar 

  • Costil, S., H. Li, and C. Coddet. 2004. New developments in the PROTAL® process, in ITSC-2004, DVS, Düsseldorf, Germany, proceedings.

    Google Scholar 

  • Davis, J.R., ed. 2004. Handbook of thermal spray technology. Materials Park: ASM International.

    Google Scholar 

  • Deng, J., and S. Junlong. 2008. Sand erosion performance of B4C based ceramic nozzles. International Journal of Refractory Metals and Hard Materials 26: 128–134.

    Article  CAS  Google Scholar 

  • Ding, Y., H. Li, and Y. Tian. 2019. Bristle blasting surface preparation in thermal spraying. Journal of Thermal Spray Technology 28: 378–390.

    Article  CAS  Google Scholar 

  • Dong, S., B. Song, B. Hansz, H. Liao, and C. Coddet. 2011. Improvement in the microstructure and property of plasma sprayed metallic, alloy and ceramic coatings by using dry ice blasting. In 5th. RIPT conference, CEC Limoges December 2011, e-proceedings.

    Google Scholar 

  • Dong, S.-J., B. Song, G.-S. Zhou, C.-J. Li, B. Hansz, H.-L. Liao, and C. Coddet. 2013. Preparation of aluminum coatings by atmospheric plasma spraying and dry-ice blasting and their corrosion behaviour. Journal of Thermal Spray Technology 22 (7): 1222–1229.

    Article  CAS  Google Scholar 

  • Elbing, F., N. Anagrehb, L. Dorn, and E. Uhlmann. 2003. Dry ice blasting as pretreatment of aluminum surfaces to improve the adhesive strength of aluminium bonding joints. International Journal of Adhesion and Adhesives 23: 69–79.

    Article  CAS  Google Scholar 

  • Fukumoto, M., and Y. Huang. 1999. Flattening mechanism in thermal sprayed Ni particles impinging on flat substrate surface. Journal of Thermal Spray Technology 8 (3): 427–432.

    Article  CAS  Google Scholar 

  • Fukumoto, M., I. Ohgitani, and T. Yasui. 2004. Effect of substrate surface change on flattening behaviour of thermal sprayed particles. Materials Transactions 45 (6): 1869–1873.

    Article  CAS  Google Scholar 

  • Griffiths, B.J., D.T. Gawne, and Guishu Dong. 1996. The erosion of steel surfaces by grit-blasting spraying as a preparation for plasma. Wear 194: 95–102.

    Article  CAS  Google Scholar 

  • Grishina, I.P., S.V. Telegin, A.V. Lyasnikova, O.A. Markelova, and O.A. Dudareva. 2019. Development of the combined technology of modification of the surface of titanium implants by laser radiation with subsequent plasma spraying of bio-compatible coatings. Metallurgist 63 (1–2): 215–230.

    Article  CAS  Google Scholar 

  • Guessasma, S., G. Montavon, and C. Coddet. 2003. On the implementation of the fractal concept to quantify thermal spray deposit surface characteristics. Surface and Coatings Technology 173 (1): 24–38.

    Article  CAS  Google Scholar 

  • He, Jianhong, Bruce Dulin, and Thomas Wolfe. 2008. Peening effect of thermal spray coating process. Journal of Thermal Spray Technology 17 (2): 214–220.

    Google Scholar 

  • Hu, Z., Lei Zhu, Teng Jiaxu, Xuehong Ma, and Shi Xiaojun. 2008. Evaluation of three-dimensional surface roughness parameters based on digital image processing. International Journal of Advanced Manufacturing Technology 2008 (January).

    Google Scholar 

  • Knapp, J.K., and J.A. Taylor. 1996. Waterjet roughened surface analysis and bond strength. Surface and Coatings Technology 86–87: 22–27.

    Article  Google Scholar 

  • Kovacevic, R., M. Hashish, R. Mohan, M. Ramula, T.J. Kim, and E.S. Geskin. 1997. State of the art of research and development in abrasive-water-jetting machining, Transactions of ASME. Journal of Manufacturing Science and Engineering 119: 776–785.

    Article  Google Scholar 

  • Landau, L., and E. Lifshitz. 1984. Statistical physics. Moscow: MIR.

    Google Scholar 

  • Leung, N.P., W. Zupka, and W. Ziemlich. 1992. Cleaning techniques for removal of surface particulates. Journal of Applied Physics 73: 513–3523.

    Google Scholar 

  • Li, H., S. Costil, H.-L. Liao, and C. Coddet. 2005. Role of laser surface preparation on the adhesion of Ni-5 wt%, Al coatings deposited using the PROTAL® process. In ITSC-2005: Explore its potential! ed. E. Lugscheider. Materials Park: ASM International.

    Google Scholar 

  • ———. 2006a. Role of the laser surface preparation on the adhesion of Ni-5 wt% Al coatings deposited using the PROTAL® process. Journal of Thermal Spray Technology 15 (2): 191–197.

    Article  CAS  Google Scholar 

  • Li, H., S. Costil, S.-H. Deng, C. Coddet, H.-L. Liao, K. Richardt, E. Lugscheider, and K. Bobzin. 2006b. Ni-Cr coatings deposited on a magnesium alloy substrate using the Protal process. In ITSC-2006, ed. B. Marple. Materials Park: ASM International.

    Google Scholar 

  • Liao, H., P. Vaslia, Y. Young, and C. Coddet. 1999. Determination of the residual stress distribution from in situ measurements for thermally sprayed WC-Co coatings. Journal of Thermal Spray Technology 6 (2): 235–241.

    Article  Google Scholar 

  • Liao, H., A. Gammondi, S. Costil, and C. Coddet. 2003. Influence of surface laser cleaning combined with substrate preheating on the splat morphology. In TS-2003: Advancing the science and applying the technology, ed. C. Moreau and B. Marple, 883–888. Materials Park: ASM International.

    Google Scholar 

  • Maruyama, T., K. Akagi, and T. Kobayaski. 2006. Effects of blasting parameters on removability of residual grit. Journal of Thermal Spray Technology 15 (4): 817–821.

    Article  CAS  Google Scholar 

  • ———. 2007. Effect of the blasting angle on the amount of the residual grit on blasted substrates. In TS-2007, ed. B.P. Marple et al. Materials Park: ASM International.

    Google Scholar 

  • Mellali, M., A. Grimaud, A.C. Léger, P. Fauchais, and J. Lu. 1997. Alumina grit blasting parameters for surface preparation in the plasma spraying operation. Journal of Thermal Spray Technology 6 (2): 217–227.

    Article  CAS  Google Scholar 

  • Mohammadi, Z., A.A. Ziaei-Moagyed, and A. Sheik-Mehdi Mesgar. 2007. Grit blasting of Ti-6Al-4 V alloys: Optimization and its effect on adhesion strength of plasma sprayed hydroxyapatite coatings. International Journal of Materials and Product Technology 19: 415–423.

    Google Scholar 

  • Momber, A.W., and R. Kovacevic. 1998. Principles of abrasives water jet machining. London: Springer Ltd.

    Book  Google Scholar 

  • Momber, A.W., Y.C. Wong, R. Ij, and E. Budiharma. 2002. Hydro-dynamic profiling and grit blasting of low-carbon steel surfaces. Tribology International 35: 271–281.

    Article  CAS  Google Scholar 

  • Montavon G. 2004. Quality control of thermal sprayed coatings, Course Thermal Spraying, Aliderte Limoges France.

    Google Scholar 

  • Ness, E., and R. Zibbell. 1996. Abrasion and erosion of hard materials related to wear in the abrasive water jet. Wear 196: 120–125.

    Article  CAS  Google Scholar 

  • Scrivani, A., G. Rizzi, and C. Giolli. 2006. Improved surface preparation of nickel-superalloys for MCrAlY coatings on gas turbine. In Proceedings of ITSC-2006 conference, ed. B. Larple et al. Materials Park: ASM International.

    Google Scholar 

  • Shin, Y.C., S.J. Oh, and S.A. Coker. 1995. Surface roughness measurement by ultrasonic sensing for in-process monitoring. ASME Journal of Engineering for Industry 117: 439–447.

    Article  Google Scholar 

  • Spur, G., E. Uhlmann, and F. Elbing. 1999. Dry-ice blasting for cleaning: Process, optimization and application. Wear 233–235: 402–411.

    Article  Google Scholar 

  • Stratford, S. 2000. Dry ice blasting for paint stripping and surface preparation. Metal Finishing 98 (6): 493–499.

    Article  Google Scholar 

  • Tanaka, Y., and M. Fukumoto. 1999. Investigation of dominating factor on flattening behavior of plasma sprayed ceramic particles. Surface and Coatings Technology 12 (121): 124–130.

    Article  Google Scholar 

  • Taylor, T.A. 1995a. Surface roughening of metallic substrates by high pressure pure waterjet. Surface and Coatings Technology 76–77: 95–100.

    Article  Google Scholar 

  • ———. 1995b. Surface roughening of superalloys by high pressure water jets. In TS-1995: Science and technology, ed. C.C. Berndt and S. Sampath, 351–358. Materials Park: ASM International.

    Google Scholar 

  • Thermal Spraying, Practice, Theory and Applications. 1985. American Welding Society, Miami, FL.

    Google Scholar 

  • Thomas, T.R. 1999. Rough surfaces. London: Imperial College press.

    Google Scholar 

  • Tian, J.-J., Y.-K. Wei, C.-X. Li, G.-J. Yang, and C.-J. Li. 2018. Effect of post-spray shot peening treatment on the corrosion behavior of NiCr-Mo coating by plasma spraying of the shell–core–structured powders. Journal of Thermal Spray Technology 27: 232–242.

    Article  CAS  Google Scholar 

  • Tomovich, S.J., and Z. Peng. 2005. Optimized reflection imaging for surface roughness analysis using confocal laser scanning microscopy and height encoded image processing. Journal of Physics Conference Series 13: 426–429.

    Article  Google Scholar 

  • Tonshoff, H.K., H. Janocha, and M. Seidel. 1988. Image processing in a production environment. Annals CIRP 37 (2): 579–589.

    Article  Google Scholar 

  • Varacalle, D.J., Jr., D.P. Guillen, D.M. Deason, W. Rhodaberger, and E. Sampson. 2006. Effect of grit blasting on substrate roughness and coating adhesion. Journal of Thermal Spray Technology 15 (3): 348–355.

    Article  CAS  Google Scholar 

  • Vorburger, T.V., and E.C. Teague. 1981. Optical techniques for on-line measurements of surface finish. Precision Engineering 3 (2): 61–83.

    Article  Google Scholar 

  • Wang, L. 2004. Erosion testing and surface preparation using abrasive water-jetting. Journal of Materials Engineering and Performance 13 (1): 103–106.

    Article  CAS  Google Scholar 

  • Wang, J., H. Wang, H. Wang, and Z. Zeng. 2012. Preparation of Ni60-WC coating by plasma spraying, plasma re-melting and plasma spray welding on surface of hot forging die. Journal Wuhan University of Technology, Materials Science Edition 27 (4): 640–643.

    Article  CAS  Google Scholar 

  • Wigren, J. 1988. Grit blasting as surface preparation before plasma spraying. In Thermal spray: Advances in coatings technology, ed. D. Hauck, 99–104. Materials Park: ASM International.

    Google Scholar 

  • Yang, Y., H.G. Wang, X.P. Cao, and L. Wang. 2006. Influence of substrate surface roughness on adhesive strength. In Proceedings of the ITSC-2006, ed. B. Marple et al. Materials Park: ASM International.

    Google Scholar 

  • Yankee, S.J., R.L. Salsbury, and B.J. Pletka. 1991. Quality control of hydroxylapatite coating: properties, processes and applications. In TS-1991, ed. T. Bernecki, 505–513. Materials Park: ASM International.

    Google Scholar 

  • Zeng, J., and T.J. Kim. 1996. An erosion model for abrasive waterjet milling of polycrystalline ceramics. Wear 199: 275–282.

    Article  CAS  Google Scholar 

  • Zeng, Z., H. Wang, Wang Hongfu1, and J. Wang. 2012. Preparation of Ni60-Cr3C2 coating by plasma spraying, plasma re-melting and plasma spray welding on W6Mo5Cr4V2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Nomenclature

Nomenclature

Units are indicated in parentheses; when no units are indicated, the parameter is dimensionless.

1.1 Latin Alphabet

AA:

Arithmetic average (μm), Eq.14.1

c m :

Sound velocity in the substrate (m/s)

c s :

Shock speed in the substrate (m/s)

c w :

Sound velocity in water (m/s)

d :

Blasting distance (m)

d b :

Blasting distance (m)

d o :

Sapphire orifice internal diameter for water jet (m)

d 50 :

Particle diameter below which 50 wt.% of the particles are found

Ds :

Sample support diameter (m)

E j :

Water jet energy (J)

h i :

Peak height (m)

Ku :

Kurtosis, or third moment

L c :

Distance to the beginning of the droplet zone (m)

l n :

Assessment length (m), Fig. 14.5

l t :

Transverse length (m), Fig. 14.5

L T :

Length of the profiled section with the water jet (m)

\( {\dot{m}}_g \) :

Air mass flow rate (kg/s)

\( {\dot{m}}_w \) :

Water jet mass flow rate (kg/s)

m p :

Particle mass (kg)

\( {\dot{m}}_p \) :

Grit particle flow rate (kg/s)

N :

Number of measurements (−)

p :

Blasting pressure (MPa)

P:

Number of passes

r t :

Radius of the target area hit by blasting particles (m)

R a :

Average roughness (μm), Eq. 14.2

R sm :

Arithmetic mean of the widths of the profile (μm) Eq. 14.6

R t :

Distance between the highest peak and the deepest undercut (μm)

R z :

Root-mean square roughness (μm) Eq. 14.3

R Δq :

Root mean square value (μm) Eq. 14.4

S k :

Skewness parameter , Eq. 14.5

S n :

Blasting nozzle internal cross section area (m2)

t b :

Blasting time (s), Eq. 14.7

t E :

Local exposure time (tE = LT/vt) to the water jet (s)

t EC :

Critical exposure time to a water jet (s)

t Es :

Time to saturation point (s) Fig. 14.36

v g :

Air velocity (m/s)

v j :

Water jet velocity (m/s)

v m :

Displacement velocity of the blasting nozzle (m/s)

v p :

Particle velocity (m/s)

v t :

Transverse velocity of the water jet/substrate (m/s)

x :

Sampling length (m)

z :

Surface height (μm)

1.2 Greek Alphabet

δ uc :

Characteristic dimension of the undercut (m)

ρ g :

Air specific mass (kg/m3)

ρ m :

Specific mass of the substrate (kg/m3)

ρ p :

Specific mass of the particle (kg/m3)

ρ w :

Specific mass of water (kg/m3)

σ p :

Surface tension liquid drop

φ :

Water jet nozzle efficiency parameter (−)

φ(x):

Distribution function (−)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boulos, M.I., Fauchais, P.L., Heberlein, J.V.R. (2021). Surface Preparation. In: Thermal Spray Fundamentals. Springer, Cham. https://doi.org/10.1007/978-3-030-70672-2_14

Download citation

Publish with us

Policies and ethics