Skip to main content

New Global Membership Scaling Fuzzy C-Means Clustering Algorithm

  • Conference paper
  • First Online:
Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2020)

Abstract

With the increasing amount of data, the calculation of the distance is complicated in fuzzy c-means. In this paper, we propose a new global membership scaling FCM (GMSFCM). The data will be divided into two types at each iteration: the first one is the in-cluster samples, which will not change their clusters in next iteration; the second one is the out-of-cluster samples, which will change their clusters in next iteration; then a new scheme for scaling the membership degrees is suggested to boost the effect of the in-cluster samples and weaken the effect of the out-of-cluster samples. However, the filtering of the in-cluster and the out-of-cluster samples often leads to a high computational complexity per iteration. Thus, we will use triangle inequality to avoid unnecessary distance calculations. The new scheme not only improves the convergence but also keeps the quality for fuzzy clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://archive.ics.uci.edu/ml/index.php.

References

  1. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  2. Elkan, C.: Using the triangle inequality to accelerate k-means. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 147–153 (2003)

    Google Scholar 

  3. Ding, Y., Zhao, Y., Shen, X., Musuvathi, M., Mytkowicz, T.: Yinyang k-means: A drop-in replacement of the classic k-means with consistent speedup. In: International Conference on Machine Learning, pp. 579–587 (2015)

    Google Scholar 

  4. Döring, C., Lesot, M.J., Kruse, R.: Data analysis with fuzzy clustering methods. Comput. Stat. Data Anal. 51(1), 192–214 (2006)

    Article  MathSciNet  Google Scholar 

  5. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  6. Ng, R.T., Han, J.: Clarans: a method for clustering objects for spatial data mining. IEEE Trans. Knowl. Data Eng. 5, 1003–1016 (2002)

    Article  Google Scholar 

  7. Jiulun, F.: New Fuzzy Clustering Algorithm and Clustering Validity. Xidian University, pp. 53–54 (1998)

    Google Scholar 

  8. Peizhuang, W.: Pattern recognition with fuzzy objective function algorithms (james c. bezdek). SIAM Rev. 25(3), 442 (1983)

    Google Scholar 

  9. Zhang, L., Zhong, W., Zhong, C., Wei, L., Liu, X., Pedrycz, W.: Fuzzy c-means clustering based on dual expression between cluster prototypes and reconstructed data. Int. J. Approx. Reason. 90 (2017)

    Google Scholar 

  10. Hathaway, R.J., Hu, Y.: Density-weighted fuzzy c-means clustering. IEEE Trans. Fuzzy Syst. 17(1), 243–252 (2008)

    Article  Google Scholar 

  11. Dong, H., Dong, Y., Zhou, C., Yin, G., Hou, W.: A fuzzy clustering algorithm based on evolutionary programming. Expert Syst. Appl. 36(9), 11792–11800 (2009)

    Article  Google Scholar 

  12. Lei, T., Jia, X., Zhang, Y., He, L., Meng, H., Nandi, A.K.: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans. Fuzzy Syst. 26(5), 3027–3041 (2018)

    Article  Google Scholar 

  13. Wang, Y., Chen, L., Mei, J.P.: Stochastic gradient descent based fuzzy clustering for large data. In: 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 2511–2518. IEEE (2014)

    Google Scholar 

  14. Havens, T.C., Bezdek, J.C., Leckie, C., Hall, L.O., Palaniswami, M.: Fuzzy c-means algorithms for very large data. IEEE Trans. Fuzzy Syst. 20(6), 1130–1146 (2012)

    Article  Google Scholar 

  15. Parker, J.K., Hall, L.O.: Accelerating fuzzy-c means using an estimated subsample size. IEEE Trans. Fuzzy Syst. 22(5), 1229–1244 (2013)

    Article  Google Scholar 

  16. Mei, J.P., Wang, Y., Chen, L., Miao, C.: Large scale document categorization with fuzzy clustering. IEEE Trans. Fuzzy Syst. 25(5), 1239–1251 (2016)

    Article  Google Scholar 

  17. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuisheng Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, S., Li, D. (2021). New Global Membership Scaling Fuzzy C-Means Clustering Algorithm. In: Meng, H., Lei, T., Li, M., Li, K., Xiong, N., Wang, L. (eds) Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. ICNC-FSKD 2020. Lecture Notes on Data Engineering and Communications Technologies, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-70665-4_22

Download citation

Publish with us

Policies and ethics