Skip to main content

Case Retrieval with Clustering for a Case-Based Reasoning and Inverse Problem Methodology: An Investigation of Financial Bubbles

  • Conference paper
  • First Online:
Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2020)

Abstract

This paper proposes an approach for predicting abnormal asset performance in traded securities, often referred to as ‘financial bubbles’. It uses an ensemble technique based on Case-based Reasoning (CBR) and Inverse Problems (IP), which we term IPCBR. More specifically we propose a Machine Learning formative strategy to determine the causes of stock behaviour, rather than to predict future time series points in fuzzy environments. In so doing, our paper contributes to more robust strategies in investigating financial bubbles. The framework uses a geometric pattern description of historical time series and applies clustering techniques to derive a model that generalizes those patterns onto observations. The model constitutes the forward approach to the IPCBR framework; our results demonstrate that, given the target problem, our CBR model provides a computationally inexpensive description of abnormal asset performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although they both provide different information that can be used for analysis, the closing price is the raw price and only indicates end of sales price whereas the Adjusted price mirrors stock value after adjustments for any corporate actions like all applicable splits and dividend distributions, which better reflects the assets’ perceived value by investors.

References

  1. Protter, P.: Mathematical models of bubbles 9502 (2016)

    Google Scholar 

  2. Ince, H.: Short term stock selection with case-based reasoning technique. Appl. Soft Comput. J. 22, 205–212 (2014)

    Article  Google Scholar 

  3. Duan, W.Q., Stanley, H.E.: Cross-correlation and the predictability of financialreturn series. Physica A 390(2), 290–296 (2010)

    Article  Google Scholar 

  4. Belecheanu, R., Pawar, K.S., Barson, R.J., Bredehorst, B., Weber, F.: The application of case based reasoning to decision support in new product development. Integr. Manuf. Syst. 14(1), 36–45 (2003)

    Article  Google Scholar 

  5. Gontis, V., Havlin, S., Kononovicius, A., Podobnik, B., Stanley, H.E.: Stochasticmodel of financial markets reproducing scaling and memory in volatility return intervals. Phys. A 462, 1091–1102 (2016)

    Article  MathSciNet  Google Scholar 

  6. Case-Based Decision Theory and Financial Markets (2004)

    Google Scholar 

  7. Jenny Freeman, T.Y.: Early warning on stock market bubbles via methods ofoptimization, clustering and inverse problems. Ann. Oper. Res. 260(1–2), 293–320 (2018)

    MathSciNet  Google Scholar 

  8. Reuss, P., Dick, M., Termath, W., Althoff, K.D.: Case-based reasoning: potential benefits and limitations for documenting of stories in organizations case-based reasoning: Potentiale und Grenzen der Dokumentation von Erkla¨rungen in Organisationen. Zeitschrift fu¨r Arbeitswissenschaft 71(4), 252–258 (2017)

    Google Scholar 

  9. Kolodner, J.L.: Case-based reasoning. Cambridge Handb Learn. Sci. 2006, 225–242 (1983)

    Google Scholar 

  10. Shokouhi, S.V., Skalle, P., Aamodt, A.: An overview of case-based reasoning applications in drilling engineering. Artif. Intell. Rev. 41(3), 317–329 (2011). https://doi.org/10.1007/s10462-011-9310-2

    Article  Google Scholar 

  11. Yaman, F., Yakhno, V.G., Potthast, R.: A survey on inverse problems for appliedsciences. Math. Prob. Eng. 2013 (2013)

    Google Scholar 

  12. Bal, G.: Introduction to Inverse Problems (2012)

    Google Scholar 

  13. Bunge, M.: Inverse problems. Found. Sci. 24(3), 483–525 (2019). https://doi.org/10.1007/s10699-018-09577-1

    Article  MathSciNet  MATH  Google Scholar 

  14. Thomas, C.: South Sea Bubble 17, 17–37 (2003)

    Google Scholar 

  15. Herzog, B.: An econophysics model of financial bubbles. Nat. Sci. 7(7), 55–63 (2007)

    Google Scholar 

  16. Kubicova´, I., Koma´rek, L.: The Classification and Identification. Finan. a u´vˇerCzech J. Econ. Finan. 61(1(403)), 34–48 (2011)

    Google Scholar 

  17. Martin, A., Ventura, J.: Economic growth with bubbles. Am. Econ. Rev. 102(6), 3033–3058 (2012)

    Article  Google Scholar 

  18. Barberis, N., Greenwood, R., Jin, L., Shleifer, A.: Extrapolation and Bubbles (2017)

    Google Scholar 

  19. Sornette, D., Cauwels, P.: Financial bubbles : mechanisms and diagnostics (January), 1–24 (2014)

    Google Scholar 

  20. Jiang, Z.Q., Zhou, W.X., Sornette, D., Woodard, R., Bastiaensen, K., Cauwels, P.: Bubble diagnosis and prediction of the 2005–2007 and 2008–2009 Chinese stock market bubbles. J. Econ. Behav. Organ. 74(3), 149–162 (2010)

    Article  Google Scholar 

  21. Taipalus, K.: Detecting asset price bubbles with time-series methods Detectingasset price bubbles with time-series methods (2012)

    Google Scholar 

  22. Press, P., Profit, T.: Bursting Bubbles: Finance, Crisis And The Efficient Market Hypothesis. Profit Doctrine, 125–146 (2017)

    Google Scholar 

  23. Nedelcu, S.: Mathematical Models for Financial Bubbles. PhD thesis (2014)

    Google Scholar 

  24. Ekpenyong, F., Samakovitis, G., Kapetanakis, S., Petridis, M.: An ensemble method: case-based reasoning and the inverse problems in investigating financial bubbles, pp. 153–168 (2019)

    Google Scholar 

  25. Lei, Y., Peng, Y., Ruan, X.: Applying case-based reasoning to cold forging processplanning. J. Mater. Process. Technol. 112(1), 12–16 (2001)

    Article  Google Scholar 

  26. Merelli, E., Luck, M.: Technical forum group on agents in bioinformatics. Knowl. Eng. Rev. 20(2), 117–125 (2004)

    Google Scholar 

  27. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994)

    Article  Google Scholar 

  28. Marketos, G., Pediaditakis, K., Theodoridis, Y., Theodoulidis, B.: Intelligent Stock Market Assistant using Temporal Data Mining. Citeseer, May 2014, pp. 1–11 (1999)

    Google Scholar 

  29. Pecar, B.: Case-based algorithm for pattern recognition and extrapolation (APRE method). In: SGES/SGAI International Conference on Knowledge Based Systems and Applied Artificial Intelligence (2002)

    Google Scholar 

  30. He, H., Chen, J., Jin, H., Chen, S.: Stock trend analysis and trading strategy. In: Proceedings of the 9th Joint Conference on Information Sciences, JCIS 2006 (2006)

    Google Scholar 

  31. Chen, S.H., Wang, P.P., Kuo, T.W.: Computational intelligence in economics andfinance: volume II. Comput. Intell. Econ. Finan. II(January), 1–227 (2007)

    Google Scholar 

  32. Tarantola, A.: Chapter 1: Introduction 1.1 Inverse Theory: What It Is and What It Does. Albert Tarantola, 1st ed, pp. 1-11. Elsevier Scientific Publishing Company, Amsterdam (1987)

    Google Scholar 

  33. Argoul, P.: Overview of Inverse Problems, Parameter Identification in Civil Engineering, pp. 1–13 (2012)

    Google Scholar 

  34. Van Rossum, G., Drake Jr, F.L.: Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam (1995)

    Google Scholar 

  35. McKinney, W.: Data structures for statistical computing in python. In van derWalt, S., Millman, J. (eds.) Proceedings of the 9th Python in Science Conference, pp. 51–56 (2010)

    Google Scholar 

  36. Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)

    Google Scholar 

  37. Gogtay, N.J., Thatte, U.M.: Principles of correlation analysis. J. Assoc. Phys. India 65(MARCH), 78–81 (2017)

    Google Scholar 

  38. Beaumont, R.: An Introduction to Correlation, (September), pp. 1–28 (2012)

    Google Scholar 

  39. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Johnson, C.C., Jalali, A., Ravikumar, P.: High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods (2011)

    Google Scholar 

  41. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation withthe graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  Google Scholar 

  42. Zhang, K., Gu, X.: An affinity propagation clustering algorithm for mixed numeric and categorical datasets. Math. Probl. Eng. 2014, 1–8 (2014)

    Google Scholar 

  43. Givoni, I.E., Frey, B.J.: Semi-supervised affinity propagation with instance-level constraints. In: International Conference on Artificial Intelligence and Statistics, vol. 5, pp. 161–168 (2009)

    Google Scholar 

  44. Refianti, R., Mutiara, A., Syamsudduha, A.: Performance evaluation of affinity propagation approaches on data clustering. Int. J. Adv. Comput. Sci. Appl. 7(3) (2016)

    Google Scholar 

  45. Cayton, L.: Algorithms for manifold learning. Univ of California at San Diego. Technical Report 44(CS2008-0923), pp. 973–980 (2005)

    Google Scholar 

  46. Qiao, H., Zhang, P., Wang, D., Zhang, B.: An explicit nonlinear mapping for manifold learning. IEEE Trans. Cybern. 43(1), 51–63 (2013)

    Article  Google Scholar 

  47. Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 2(1), 86–97 (2012)

    Article  Google Scholar 

  48. Sara¸cli, S., Dogˇan, N., Dogˇan, I.: Comparison of hierarchical cluster analysis methods by cophenetic correlation. J. Inequal. Appl. 2013, 1–8 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Ekpenyong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ekpenyong, F., Samakovitis, G., Kapetanakis, S., Petridis, M. (2021). Case Retrieval with Clustering for a Case-Based Reasoning and Inverse Problem Methodology: An Investigation of Financial Bubbles. In: Meng, H., Lei, T., Li, M., Li, K., Xiong, N., Wang, L. (eds) Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. ICNC-FSKD 2020. Lecture Notes on Data Engineering and Communications Technologies, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-70665-4_164

Download citation

Publish with us

Policies and ethics