Skip to main content

Random Walk and Shared Neighbors-Based Similarity for Patterns in Graph Data

  • Conference paper
  • First Online:
Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2020)

Abstract

This paper discusses the similarity of patterns in graph data. Here, the so-named graph data is composed by two absolutely different information, one is pattern’s attribute information and the other is the relation between patterns, i.e., topological information. Bearing this in mind, a random walk and shared neighbors-based similarity measurement for patterns is proposed. In this measurement, the reachability of any two patterns is fully studied. For the patterns topological structure is connected, we consider the similarity of shared neighbors and topological information. For patterns, whose topological structure is unconnected, we only consider the attribute-based information of patterns. On this base, a composite and novel measurement similarity for patterns in graph data is constructed. In conclusion, an example is given to verify the effectiveness of the measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Milyahilu, J., Kim, J.N.: Generative probabilistic model with Dirichlet prior distribution for similarity analysis of research topic. J. Korea Multimedia Soc. 23(4), 595–602 (2020)

    Google Scholar 

  2. Stevens, J.R., Soh, L.-K.: Predicting similarity judgments in intertemporal choice with machine learning. Psychon. Bull. Rev. 25(2), 627–635 (2017). https://doi.org/10.3758/s13423-017-1398-1

    Article  Google Scholar 

  3. Ahlad, K., Omair, A.M.: Image denoising via overlapping group sparsity using orthogonal moments as similarity measure. ISA Trans. 85, 293–304 (2019)

    Article  Google Scholar 

  4. Bustince, H., Barrenechea, E., Pagola, M.: Image thresholding using restricted equivalence functions and maximizing the measures of similarity. Fuzzy Sets Syst. 158, 496–516 (2007)

    Article  MathSciNet  Google Scholar 

  5. Sun, X.Q., Wandelt, S.: Network similarity analysis of air navigation route systems. Transp. Res. Part E 70, 416–434 (2017)

    Article  Google Scholar 

  6. Nguyen, T.H., Tran, D.Q., Dam, G.M., Nguyen, M.H.: Estimating the similarity of social network users based on behaviors. Vietnam J. Comput. Sci. 5(2), 165–175 (2018). https://doi.org/10.1007/s40595-018-0112-1

    Article  Google Scholar 

  7. Ashkezari-Toussi, S., Kamel, M., Sadoghi-Yazdi, H.: Emotional maps based on social networks data to analyze cities emotional structure and measure their emotional similarity. Cities 86, 113–124 (2019)

    Article  Google Scholar 

  8. Hamzelou, N., Ashtiani, M.: A mitigation strategy for the prevention of cascading trust failures in social networks. Fut. Gener. Comput. Syst. 94, 564–586 (2019)

    Article  Google Scholar 

  9. Egghe, L., Rousseau, R.: Lorenz theory of symmetric relative con-centration and similarity, incorporating variable array length. Math. Comput. Model. 44(7), 628–639 (2006)

    Article  Google Scholar 

  10. Liu, S.H., Yu, F.S.: Hesitation degree-based similarity measures for intuitionistic fuzzy sets. Int. J. Inf. Commun. Technol. 6(1), 7–22 (2014)

    Google Scholar 

  11. Emmert-Streib, F., Dehmer, M., Shi, Y.T.: Fifty years of graph matching, network alignment and network comparison. Inf. Sci. 346(10), 180–197 (2016)

    Article  MathSciNet  Google Scholar 

  12. Buczkowska, S., Coulombel, N., Lapparent, M.: A comparison of Euclidean distance, travel times, and network distances in location choice mixture models. Netw. Spat. Econ. 19(4), 1215–1248 (2019)

    Article  Google Scholar 

  13. Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity: making sense of fuzzy sets. Fuzzy Sets Syst. 192(1), 3–24 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  15. Hu, M.M., Lan, J.B., Wang, Z.X.: A distance measure, similarity measure and possibility degree for hesitant interval-valued fuzzy sets. Ind. Eng. 137, 88–106 (2019)

    Google Scholar 

  16. Qian, Y.H., Liang, J.Y., Song, P., Dang, C.Y.: On dominance relations in disjunctive set-valued ordered information systems. Int. J. Inf. Technol. Decis. Mak. 9(1), 9–33 (2010)

    Article  Google Scholar 

  17. Maggini, M., Melacci, S., Sarti, L.: Learning from pairwise constraints by similarity neural networks. Neural Netw. 26, 141–158 (2012)

    Article  Google Scholar 

  18. Gao, W., Farahani, M.R.: Degree-based indices computation for special chemical molecular structures using edge dividing method. Math. Nonlinear Sci. 1(1), 99–122 (2016)

    Article  MathSciNet  Google Scholar 

  19. Zhang, X., Li, J., Yu, H.: Local density adaptive similarity measurement for spectral clustering. Pattern Recogn. Lett. 32(2), 352–358 (2011)

    Article  Google Scholar 

  20. He, X.Q., Zhang, S., Liu, Y.Q.: An adaptive spectral clustering algorithm based on the importance of shared nearest neighbors. Algorithms 8(2), 177–189 (2015)

    Article  MathSciNet  Google Scholar 

  21. Chang, H., Yeung, D.Y.: Robust path-based spectral clustering. Pattern Recogn. 41(1), 191–203 (2008)

    Article  Google Scholar 

  22. Zhu, X., Loy, C.C., Gong, S.: Constructing robust affinity graphs for spectral clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, 23–28 June, pp. 1450–1457 (2014)

    Google Scholar 

  23. Liu, S.H., Chen, X.Z.: Random walk-based similarity measure method for patterns in complex object. Open Phys. 15(1), 154–159 (2017)

    Article  Google Scholar 

  24. Dehmer, M., Emmert-Streib, F., Kilian, J.: A similarity measure for graphs with low computational complexity. Appl. Math. Comput. 182(1), 447–459 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Beauchemin, M.: A density-based similarity matrix construction for spectral clustering. Neurocomputing 151(5), 835–844 (2015)

    Article  Google Scholar 

  26. Zager, L.A., Verghese, G.C.: Graph similarity scoring and matching. Appl. Math. Lett. 21(1), 86–94 (2018)

    Article  MathSciNet  Google Scholar 

  27. Yuya, N., Yong, S.W., Kenji, K.: An initial estimation method using cosine similarity for multivariate curve resolution: application to NMR spectra of chemical mixtures. Analyst 144(20), 5986–5995 (2019)

    Article  Google Scholar 

  28. Singh, P.K.: Bipolar fuzzy concept learning using next neighbor and Euclidean distance. Soft. Comput. 23(12), 4503–4520 (2018). https://doi.org/10.1007/s00500-018-3114-0

    Article  MATH  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Nos. 61966039, 61866040, 11971065), Yunnan Province education department scientific research fund project (Nos. 2021Y670).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, L., Liu, S., Duan, G. (2021). Random Walk and Shared Neighbors-Based Similarity for Patterns in Graph Data. In: Meng, H., Lei, T., Li, M., Li, K., Xiong, N., Wang, L. (eds) Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. ICNC-FSKD 2020. Lecture Notes on Data Engineering and Communications Technologies, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-70665-4_141

Download citation

Publish with us

Policies and ethics