Skip to main content

Principal Component Analysis in Digital Image Processing for Automated Glaucoma Diagnosis

  • Conference paper
  • First Online:
XXVII Brazilian Congress on Biomedical Engineering (CBEB 2020)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 83))

Included in the following conference series:

Abstract

The digital image processing (DIP) techniques usually generate attribute vectors that tend to contain a large number of elements. When working with automated classification techniques, some commonly verified attributes may have low relevance for solving a specific problem or even worse the classification, unnecessarily increasing the dimensionality of the problem. A limited set of relevant attributes simplifies the representation of the image, and consequently, a better interpretation of the data occurs. In this perspective, this research applied Principal Component Analysis (PCA), a widely disseminated technique for reducing dimensionality in the literature, to the attribute vector generated by the DIP, with the aim of increasing the accuracy of the classification of this vector. As a case study, retinal image classification for the diagnosis of glaucoma was used. The data set used was the second version of RIM-ONE, provided by the Medical Image Analysis Group of the University of Laguna, Spain. The results showed that with the application of the PCA, a better classification of the images occurs. With only 7 components, a better classification was obtained than the original data set, which has 36 attributes. These results validate the possibility of applying PCA to optimize the automated glaucoma diagnostic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available on http://rimone.isaatc.ull.es.

References

  1. Ávila M, Alves MR, Nish M (2015) As condições de saúde ocular no Brasil. Conselho Brasileiro de Oftalmologia, São Paulo

    Google Scholar 

  2. Barreto IFG (2019) Prevalência e causas de cegueira e visão subnormal em pacientes atendidos em um hospital público de referência de Fortaleza-CE. In: Monography (specialization in ophthalmology). Public Health School of Ceará, Fortaleza, Brazil

    Google Scholar 

  3. Lima ACM (2019) Aprendizagem Profunda Aplicada ao Diagnóstico do Glaucoma. Master’s thesis. UFMA (Universidade Federal do Maranhão)São Luís. Brazil

    Google Scholar 

  4. Van Der Maaten L, Postma E, Van den Herik J (2009) Dimensionality reduction: a comparative. J Mach Learn Res 10:13

    Google Scholar 

  5. Pedrini H, Schwartz WR (2008) Análise de imagens digitais: princípios, algoritmos e aplicações. Thomson Learning

    Google Scholar 

  6. Azevedo LM, Almeida et al (2020) Diagnóstico de Glaucoma em Retinografias Usando Índices Taxonômicos e Aprendizado de Máquina. Rev Sistem Comput RSC 10

    Google Scholar 

  7. Silva MG, Pessoa ACP, Almeida JDS, Junior GB, Paiva AC (2018) Diagnóstico do glaucoma em imagens de retinografia usando variantes de padroes locais binários. In: Anais Principais do XVIII Simpósio Brasileiro de Computação Aplicada à Saúde. SBC

    Google Scholar 

  8. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 610–621

    Google Scholar 

  9. Borges HB, Nievola JC (2006) Redução de Dimensionalidade em Bases de Dados de Expressão Gênica. Master’s thesis. PPGIa-PUCPR, Curitiba. Brazil

    Google Scholar 

  10. Larose DT (2006) Data mining methods and models, vol 2. Wiley Online Library

    Google Scholar 

  11. Medeiros CJF, Costa JAF (2008) Uma Comparação Empírica de Métodos de Redução de Dimensionalidade Aplicados a Visualização de Dados. In: Rev Soc Bras Redes Neurais 6:81–110

    Google Scholar 

  12. Camargo SS (2010) Um modelo neural de aprimoramento progressivo para redução de dimensionalidade. Ph.D. thesis. UFRGS (Universidade Federal do Rio Grande do Sul), Porto Alegre, Brazil

    Google Scholar 

  13. Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Trans R Soc A 374

    Google Scholar 

  14. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chem Intel Lab Syst 2:37–52

    Google Scholar 

  15. Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26:303–304

    Article  Google Scholar 

  16. Santo RE (2012) Utilização da Análise de Componentes Principais na compressão de imagens digitais. Einstein 10:135–139

    Article  Google Scholar 

  17. Simon H (1998) Neural networks—a comprehensive foundation, 2nd edn. Prentice Hall

    Google Scholar 

  18. Jonathon S (2014) A tutorial on principal component analysis, p 13. arXiv preprint arXiv:1404.1100

  19. Smith LI (2002) A tutorial on principal components analysis introduction. Statistics. 51:52

    Google Scholar 

  20. Augusto KS (2012) Identificação automática do grau de maturação de pelotas de minério de ferro. Rio de Janeiro

    Google Scholar 

  21. Claro ML, Veras RMS, Santana AM (2019) Metodologia para Identificação de Glaucoma em Imagens de Retina. In: Anais Estendidos do XIX Simpósio Brasileiro de Computação Aplicada à Saúde. SBC, pp 103–108

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Coordination of Superior Level Staff Improvement (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. N. Neves .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neves, C.N., da Encarnação, D.S., Souza, Y.C., da Silva, A.O.R., Oliveira, F.B.S., Ambrósio, P.E. (2022). Principal Component Analysis in Digital Image Processing for Automated Glaucoma Diagnosis. In: Bastos-Filho, T.F., de Oliveira Caldeira, E.M., Frizera-Neto, A. (eds) XXVII Brazilian Congress on Biomedical Engineering. CBEB 2020. IFMBE Proceedings, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-030-70601-2_224

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70601-2_224

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70600-5

  • Online ISBN: 978-3-030-70601-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics