Skip to main content

Socket Material and Coefficient of Friction Influence on Residuum-Prosthesis Interface Stresses for a Transfemoral Amputee: A Finite Element Analysis

  • Conference paper
  • First Online:
XXVII Brazilian Congress on Biomedical Engineering (CBEB 2020)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 83))

Included in the following conference series:

  • 146 Accesses

Abstract

One of the main difficulties associated with the use of lower limb prosthesis is the perception of discomfort and pain in the residual limb, mainly due to poorly-fitted sockets. In this context, numerical simulations have performed a fundamental role in the search for successful fittings, contributing towards enhancement of the traditional iterative and labor-intensive fabrication process. This work aims to apply finite element modeling to simulate the socket-limb interface stresses for a transfemoral amputee during gait, and to investigate the effects of socket material and coefficient of friction on comfort and durability. The developed model was composed by socket, stump and femur geometries, and presented a loading scenario corresponding to the forces acting on the hip joint during a gait cycle. Several simulations were conducted, with varying design parameters, such that each configuration was analyzed in terms of prosthetic resistance to cyclic loading and distribution of contact pressures and frictional stresses. Carbon fiber sockets demonstrated greatest durability among the four tested materials, but it also induced a slight increase in the maximum contact pressure. As the coefficient of friction was incremented, contact pressures were reduced, and frictional stresses increased, with the values between 0.5 and 0.8 showing the best compromises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harkins CS, McGarry A, Buis A (2012) Provision of prosthetic and orthotic services in low-income countries. Prosthet Orthot Int 37(5):353–361. https://doi.org/10.1177/0309364612470963

    Article  Google Scholar 

  2. Vargas MAO, Ferrazzo S, Schoeller SD et al (2014) The healthcare network to the amputee. Acta Paul Enferm 27(6):526–532. https://doi.org/10.1590/1982-0194201400086

    Article  Google Scholar 

  3. Dickinson AS, Steer JW, Worsley PR (2017) Finite element analysis of the amputated lower limb: a systematic review and recommendations. Med Eng Phys 43:1–18. https://doi.org/10.1016/j.medengphy.2017.02.008

    Article  Google Scholar 

  4. Balk EM, Gazula A, Markozannes G et al (2018) Lower limb prostheses: measurement instruments, comparison of component effects by subgroups, and long-term outcomes. Comp Effect Rev 213:1–18

    Google Scholar 

  5. Colombo G, Filippi S, Rizzi C et al (2010) A new design paradigm for the development of custom-fit soft sockets for lower limb prostheses. Comput Ind 61(6):513–523. https://doi.org/10.1016/j.compind.2010.03.008

    Article  Google Scholar 

  6. Lee WCC, Zhang M (2007) Using computational simulation to aid in the prediction of socket fit: a preliminary study. Med Eng Phys 29:923–929. https://doi.org/10.1016/j.medengphy.2006.09.008

    Article  Google Scholar 

  7. Ginestra PS, Ceretti E, Fiorentino A (2016) Potential of modeling and simulations of bioengineered devices: endoprostheses, prostheses and orthoses. P I Mech Eng H 230(7):607–638. https://doi.org/10.1177/0954411916643343

    Article  Google Scholar 

  8. Viceconti M, Casali M, Massari B et al (1996) The “standardized femur program” proposal for a reference geometry to be used for the creation of finite element models of the femur. J Biomech 29(9):1241

    Article  Google Scholar 

  9. Dumas R, Cheze L, Frossard L (2009) Loading applied on prosthetic knee of transfemoral amputee: comparison of inverse dynamics and direct measurements. Gait Posture 30(4):560–562. https://doi.org/10.1016/j.gaitpost.2009.07.126

    Article  Google Scholar 

  10. Segal AD, Orendurff MS, Klute GK et al (2006) Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees. J Rehabil Res Dev 43(7):857–870. https://doi.org/10.1682/JRRD.2005.09.0147

    Article  Google Scholar 

  11. Chen N-Z, Lee WCC, Zhang M (2006) A numerical approach to evaluate the fatigue life of monolimb. Med Eng Phys 28(3):290–296. https://doi.org/10.1016/j.medengphy.2005.07.002

    Article  Google Scholar 

  12. Halsne EG, Waddingham MG, Hafner BJ (2013) Long-term activity in and among persons with transfemoral amputation. J Rehabil Res Dev 50(4):515–530. https://doi.org/10.1682/jrrd.2012.04.0066

    Article  Google Scholar 

  13. Maier C, Calafut T (1998) Polypropylene: the definitive user’s guide and databook. William Andrew, Norwich

    Google Scholar 

  14. Quadrant (2017) Quadrant EPP Proteus HDPE at https://www.piedmontplastics.com/resources/literatures/view/quadrant-epp-proteusR-hdpe

  15. Djebli A, Bendouba M, Aid A et al (2016) Experimental analysis and damage modeling of high-density polyethylene under fatigue loading. Acta Mech Solida Sin 29(2):133–144. https://doi.org/10.1016/s0894-9166(16)30102-1

    Article  Google Scholar 

  16. Al-Khazraji K, Kadhim J, Ahmed PS (2011) Effects of reinforcement material on fatigue characteristics of trans-tibial prosthetic socket with PMMA matrix. In: 4th international scientific conference of Salahaddin University-Su Erbil, Kurdistan, Iraq, pp 1–9

    Google Scholar 

  17. Mahjoob M, Alameer AKA (2018) Material characterization and fatigue analysis of lower limb prosthesis materials. Assoc Arab Univ J Eng Sci 25(3):137–154

    Google Scholar 

  18. Cagle JC, Hafner BJ, Taflin N et al (2018) Characterization of prosthetic liner products for people with transtibial amputation. J Prosthet Orthot 30(4):187–199. https://doi.org/10.1097/jpo.0000000000000205

    Article  Google Scholar 

  19. Paternò L, Ibrahimi M, Gruppioni E et al (2018) Sockets for limb prostheses: a review of existing technologies and open challenges. IEEE T Bio-Med Eng 65(9):1996–2010. https://doi.org/10.1109/tbme.2017.2775100

    Article  Google Scholar 

  20. Buis A, Kamyab M, Hillman S et al (2017) A preliminary evaluation of a hydro-cast trans-femoral socket, a proof of concept. Prosthet Orthot Open J 1(1):1–9

    Google Scholar 

  21. Moineau B (2014) Analyses des pressions à l’interface moignon-emboiture de la prothèse chez le patient amputé fémoral. Université de Grenoble, Grenoble

    Google Scholar 

  22. Neumann ES, Wong JS, Drollinger RL (2005) Concepts of pressure in an ischial containment socket: measurement. J Prosthet Orthot 17(1):2–11. https://doi.org/10.1097/00008526-200501000-00003

    Article  Google Scholar 

  23. Lee VSP, Solomonidis SE, Spence WD (1997) Stump-socket interface pressure as an aid to socket design in prostheses for trans-femoral amputees—a preliminary study. P I Mech Eng H 211(2):167–180. https://doi.org/10.1243/0954411971534287

    Article  Google Scholar 

  24. Dumbleton T, Buis AWP, McFadyen A et al (2009) Dynamic interface pressure distributions of two transtibial prosthetic socket concepts. J Rehabil Res Dev 46(3):405–416. https://doi.org/10.1682/JRRD.2008.01.0015

    Article  Google Scholar 

  25. Zhang L, Zhu M, Shen L et al (2013) Finite element analysis of the contact interface between trans-femoral stump and prosthetic socket. In: 35th annual international conference of the IEEE EMBS, Osaka, Japan, pp 1270–1273

    Google Scholar 

  26. Surapureddy R (2014) Predicting pressure distribution between transfemoral prosthetic socket and residual limb using finite element analysis. University of North Florida, Jacksonville

    Google Scholar 

  27. Baars ECT, Geertzen JHB (2005) Literature review of the possible advantages of silicon liner socket use in trans-tibial prostheses. Prosthet Orthot Int 29(1):27–37. https://doi.org/10.1080/17461550500069612

    Article  Google Scholar 

  28. Kahle JT, Orriola JJ, Johnston W et al (2014) The effects of vacuum-assisted suspension on residual limb physiology, wound healing, and function: a systematic review. Tech Innov 15(4):333–341. https://doi.org/10.3727/194982413X13844488879177

    Article  Google Scholar 

  29. Faustini MC, Neptune RR, Crawford RH et al (2006) An experimental and theoretical framework for manufacturing prosthetic sockets for transtibial amputees. IEEE T Neur Sys Reh 14(3):304–310. https://doi.org/10.1109/TNSRE.2006.881570

    Article  Google Scholar 

  30. Eitel J (2013) Carbon fiber: the more you know, the more you can do at https://opedge.com/Articles/ViewArticle/2013-07_10

  31. Laszczak P, Mcgrath M, Tang J et al (2016) A pressure and shear sensor system for stress measurement at lower limb residuum/socket interface. Med Eng Phys 38(7):695–700. https://doi.org/10.1016/j.medengphy.2016.04.007

    Article  Google Scholar 

  32. Polliack AA, Scheinberg S (2006) A new technology for reducing shear and friction forces on the skin: implications for blister care in the wilderness setting. Wild Environ Med 17(2):109–119. https://doi.org/10.1580/pr30-05.1

    Article  Google Scholar 

  33. Restrepo V, Villarraga J, Palacio JP (2014) Stress reduction in the residual limb of a transfemoral amputee varying the coefficient of friction. J Prosthet Orthot 26(4):205–211. https://doi.org/10.1097/jpo.0000000000000044

    Article  Google Scholar 

  34. Cagle JC, Reinhall PG, Hafner BJ et al (2017) Development of standardized material testing protocols for prosthetic liners. J Biomech Eng 139(4):1–12. https://doi.org/10.1115/1.4035917

    Article  Google Scholar 

  35. Webber CM, Davis BL (2015) Design of a novel prosthetic socket: assessment of the thermal performance. J Biomech 48(7):1294–1299. https://doi.org/10.1016/j.jbiomech.2015.02.048

    Article  Google Scholar 

  36. Klute GK, Bates KJ, Berge JS et al (2016) Prosthesis management of residual-limb perspiration with subatmospheric vacuum pressure. J Rehabil Res Dev 53(6):721–728. https://doi.org/10.1682/jrrd.2015.06.0121

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Glenn Klute and Krista Cyr, from the Department of Veterans Affairs Center for Limb Loss and Mobility, not only for sharing the data that allowed this work to be concretized, but also for the availability and promptitude they have demonstrated.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodrigues, A.d.S.L., Da Gama, A.E.F. (2022). Socket Material and Coefficient of Friction Influence on Residuum-Prosthesis Interface Stresses for a Transfemoral Amputee: A Finite Element Analysis. In: Bastos-Filho, T.F., de Oliveira Caldeira, E.M., Frizera-Neto, A. (eds) XXVII Brazilian Congress on Biomedical Engineering. CBEB 2020. IFMBE Proceedings, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-030-70601-2_220

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70601-2_220

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70600-5

  • Online ISBN: 978-3-030-70601-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics