Skip to main content

What Is Informatics?

  • Chapter
  • First Online:
Mental Health Informatics

Part of the book series: Health Informatics ((HI))

  • 891 Accesses

Abstract

Biomedical informatics is a discipline dating back to the 1950s that continues to evolve with the growth of data and advances in technology in biomedicine and health care. This field brings together foundational approaches from many scientific and technological disciplines that can be applied across the spectrum from molecules to individuals to populations. In the context of the learning healthcare system, this chapter highlights frameworks and methods for transforming data to knowledge, putting knowledge into practice through evidence-based technology innovations, and evaluating the impact of those innovations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collen MF. A history of medical informatics in the United States, 1950 to 1990, vol. xv. Indianapolis, IN: American Medical Informatics Association; 1995. p. 489.

    Google Scholar 

  2. J Ball M. The history of medical informatics in the United States. New York, NY: Springer Berlin Heidelberg; 2015.

    Google Scholar 

  3. Greenes RA, Shortliffe EH. Medical informatics. An emerging academic discipline and institutional priority. JAMA. 1990;263(8):1114–20.

    CAS  PubMed  Google Scholar 

  4. Hagen JB. The origins of bioinformatics. Nat Rev Genet. 2000;1(3):231–6.

    CAS  PubMed  Google Scholar 

  5. Martin-Sanchez F, et al. Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care. J Biomed Inform. 2004;37(1):30–42.

    CAS  PubMed  Google Scholar 

  6. Maojo V, et al. Medical informatics and bioinformatics: European efforts to facilitate synergy. J Biomed Inform. 2001;34(6):423–7.

    CAS  PubMed  Google Scholar 

  7. Kulikowski CA, et al. AMIA board white paper: definition of biomedical informatics and specification of core competencies for graduate education in the discipline. J Am Med Inform Assoc. 2012;19(6):931–8.

    PubMed  PubMed Central  Google Scholar 

  8. Oxford English Dictionary, O.E., “informatics, n.”. Oxford University Press.

    Google Scholar 

  9. Oxford English Dictionary, O.E., “bioinformatics, n.”. Oxford University Press.

    Google Scholar 

  10. Luscombe NM, Greenbaum D, Gerstein M. What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med. 2001;40(4):346–58.

    CAS  PubMed  Google Scholar 

  11. van Bemmel JH. The structure of medical informatics. Med Inform (Lond). 1984;9(3–4):175–80.

    Google Scholar 

  12. Bemmel JHv, Musen MA, Helder JC. Handbook of medical informatics, vol. xl. AW Houten, Netherlands, Heidelberg, Germany: Bohn Stafleu Van Loghum: Springer Verlag; 1997. 621 p.

    Google Scholar 

  13. Shortliffe E, Cimino J. Biomedical informatics, vol. 12. London: Springer London; 2014. https://doi.org/10.1007/978-1-4471-4474-8.

    Book  Google Scholar 

  14. Bernstam EV, Smith JW, Johnson TR. What is biomedical informatics? J Biomed Inform. 2010;43(1):104–10.

    PubMed  Google Scholar 

  15. Valenta AL, et al. AMIA board white paper: AMIA 2017 core competencies for applied health informatics education at the master’s degree level. J Am Med Inform Assoc. 2018;25(12):1657–68.

    PubMed  PubMed Central  Google Scholar 

  16. Mantas J, et al. Recommendations of the international medical informatics association (IMIA) on education in biomedical and health informatics. First revision. Methods Inf Med. 2010;49(2):105–20.

    PubMed  Google Scholar 

  17. Jaspers MW, et al. IMIA accreditation of biomedical and health informatics education: current state and future directions. Yearb Med Inform. 2017;26(1):252–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen ES, Sarkar IN. Informatics: identifying and tracking informatics sub-discipline terms in the literature. Methods Inf Med. 2015;54(6):530–9.

    CAS  PubMed  Google Scholar 

  19. Hersh W. A stimulus to define informatics and health information technology. BMC Med Inform Decis Mak. 2009;9:24.

    PubMed  PubMed Central  Google Scholar 

  20. Kuhn KA, et al. Informatics and medicine–from molecules to populations. Methods Inf Med. 2008;47(4):283–95.

    CAS  PubMed  Google Scholar 

  21. Payne PR, Embi PJ, Sen CK. Translational informatics: enabling high-throughput research paradigms. Physiol Genomics. 2009;39(3):131–40.

    Google Scholar 

  22. Payne PRO, Bernstam EV, Starren JB. Biomedical informatics meets data science: current state and future directions for interaction. JAMIA Open. 2018;1(2):136–141.

    Google Scholar 

  23. Boland MR, et al. Birth month affects lifetime disease risk: a phenome-wide method. J Am Med Inform Assoc. 2015;22(5):1042–53.

    PubMed  PubMed Central  Google Scholar 

  24. Sarkar IN. Biomedical informatics and translational medicine. J Transl Med. 2010;8:22.

    PubMed  PubMed Central  Google Scholar 

  25. Ball MJ, Hannah KJ. Nursing informatics: where technology and caring meet, Health informatics, vol. xxxi. 4th ed. London; New York: Springer; 2011. p. 482.

    Google Scholar 

  26. Saba VK, McCormick KA. Essentials of nursing informatics, vol. xxiii. 6th ed. New York: McGraw-Hill Education; 2015. p. 886.

    Google Scholar 

  27. Abbey LM, Zimmerman JL. Dental informatics: integrating technology into the dental environment. Computers in health care, vol. xiii. New York: Springer; 1992. p. 348.

    Google Scholar 

  28. Lewis D. Consumer health informatics: informing consumers and improving health care. Health informatics. New York: Springer; 2005. p. xxi, 258 p.

    Google Scholar 

  29. Consumer informatics and digital health: solutions for health and health care. 2018, New York, NY: Springer Science+Business Media, LLC. pages cm.

    Google Scholar 

  30. Payne PR, Embi PJ. Translational informatics: realizing the promise of knowledge-driven healthcare: Springer; 2014.

    Google Scholar 

  31. Butte AJ. Translational bioinformatics: coming of age. J Am Med Inform Assoc. 2008;15(6):709–14.

    PubMed  PubMed Central  Google Scholar 

  32. Sarkar IN, et al. Translational bioinformatics: linking knowledge across biological and clinical realms. J Am Med Inform Assoc. 2011;18(4):354–7.

    PubMed  PubMed Central  Google Scholar 

  33. Tenenbaum JD. Translational bioinformatics: past, present, and future. Genomics Proteomics Bioinformatics. 2016;14(1):31–41.

    PubMed  PubMed Central  Google Scholar 

  34. Richesson RL, Andrews JE. Clinical research informatics. Health informatics, vol. ix. London; New York: Springer; 2012. 419 pages.

    Google Scholar 

  35. Dixon BE, et al. What's past is prologue: a scoping review of recent public health and Global Health informatics literature. Online J Public Health Inform. 2015;7(2):e216.

    PubMed  PubMed Central  Google Scholar 

  36. Silva JS. Cancer informatics: essential technologies for clinical trials. Health informatics, vol. xxvi. New York: Springer; 2002. p. 377.

    Google Scholar 

  37. Oli AN, et al. Immunoinformatics and vaccine development: an overview. Immunotargets Ther. 2020;9:13–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hanson A, Levin BL. Mental health informatics, vol. x. New York: Oxford University Press; 2013. p. 274.

    Google Scholar 

  39. Diederich J, Song I. Mental health informatics: current approaches, in Mental Health Informatics: Springer; 2014. p. 1–16.

    Google Scholar 

  40. Lehmann CU, Kim GR, Johnson KB. Pediatric informatics: computer applications in child health. Health informatics series, vol. xxiv. Dordrecht; New York: Springer; 2009. 483 p.

    Google Scholar 

  41. Pantanowitz L, et al. Pathology informatics: theory & practice, vol. xvi. Chicago, Ill: American Society for Clinical Pathology Press; 2012. 352 p.

    Google Scholar 

  42. Sinard JH. Practical pathology informatics: demystifying informatics for the practicing anatomic pathologist, vol. xix. New York: Springer Science+Business Media; 2006. p. 393.

    Google Scholar 

  43. Lustgarten J. et al. Veterinary informatics: forging the future between veterinary medicine, human medicine, and One Health initiatives—a joint paper by the Association of Veterinary Informatics (AVI) and the CTSA One Health Alliance (COHA). JAMIA Open, 2020.

    Google Scholar 

  44. Institute of Medicine (U.S.). Roundtable on Value & Science-Driven Health Care, et al. Digital infrastructure for the learning health system: the foundation for continuous improvement in health and health care: workshop series summary. Learning health system series, vol. xxvi. Washington, D.C: National Academies Press; 2011. 308 p.

    Google Scholar 

  45. Friedman C, et al. Toward a science of learning systems: a research agenda for the high-functioning learning health system. J Am Med Inform Assoc. 2015;22(1):43–50.

    PubMed  Google Scholar 

  46. Friedman CP, Rubin JC, Sullivan KJ. Toward an information infrastructure for Global Health improvement. Yearb Med Inform. 2017;26(1):16–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Flynn AJ, et al. The knowledge object reference ontology (KORO): a formalism to support management and sharing of computable biomedical knowledge for learning health systems. Learn Health Syst. 2018;2(2):e10054.

    PubMed  PubMed Central  Google Scholar 

  48. Sarkar IN. Methods in biomedical informatics: a pragmatic approach. Amsterdam: Elsevier/AP, Academic Press is an imprint of Elsevier; 2014. p. xvi, 571 pages.

    Google Scholar 

  49. Ackoff RL. From data to wisdom. J Appl Syst Anal. 1989;16(1):3–9.

    Google Scholar 

  50. Zins C. Conceptual approaches for defining data, information, and knowledge. J Am Soc Info Sci Tech. 2007;58(4):479–93.

    Google Scholar 

  51. Rowley J. The wisdom hierarchy: representations of the DIKW hierarchy. J Inf Sci. 2007;33(2):163–80.

    Google Scholar 

  52. Matney S, et al. Philosophical approaches to the nursing informatics data-information-knowledge-wisdom framework. ANS Adv Nurs Sci. 2011;34(1):6–18.

    PubMed  Google Scholar 

  53. Ronquillo C, Currie LM, Rodney P. The evolution of data-information-knowledge-wisdom in nursing informatics. ANS Adv Nurs Sci. 2016;39(1):E1–18.

    PubMed  Google Scholar 

  54. Dammann O. Data, information, evidence, and knowledge:: a proposal for health informatics and data science. Online J Public Health Inform. 2018;10(3):e224.

    PubMed  Google Scholar 

  55. Piateski G, Frawley W. Knowledge discovery in databases. 1991: MIT press.

    Google Scholar 

  56. Fayyad U, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery in databases. AI Mag. 1996;17(3):37.

    Google Scholar 

  57. Kurgan LA, Musilek P. A survey of knowledge discovery and data mining process models. Knowl Eng Rev. 2006;21(1):1–24.

    Google Scholar 

  58. Mason H, Wiigins C. A taxonomy of data science. Available from: http://www.dataists.com/2010/09/a-taxonomy-of-data-science/.

  59. Janssens J, editor. Data science at the command line, vol. xvii. 1st ed. Sebastopol, CA: O’Reilly; 2014. 191 pages.

    Google Scholar 

  60. Yin S, Kaynak O. Big data for modern industry: challenges and trends [point of view]. Proc IEEE. 2015;103(2):143–6.

    Google Scholar 

  61. Jagadish H. Big data and science: myths and reality. Big Data Res. 2015;2(2):49–52.

    Google Scholar 

  62. Berman JJ. Principles of big data: preparing, sharing, and analyzing complex information, vol. xxvi. Amsterdam: Elsevier, Morgan Kaufmann; 2013. 261 pages.

    Google Scholar 

  63. Zikopoulos P. Understanding big data: analytics for enterprise class Hadoop and streaming data, vol. xxxi. New York: McGraw-Hill; 2012. 141 pages

    Google Scholar 

  64. Weber GM, Mandl KD, Kohane IS. Finding the missing link for big biomedical data. JAMA. 2014;311(24):2479–80.

    CAS  PubMed  Google Scholar 

  65. Tan SS, Gao G, Koch S. Big data and analytics in healthcare. Methods Inf Med. 2015;54(6):546–7.

    PubMed  Google Scholar 

  66. Ross MK, Wei W, Ohno-Machado L. “Big data” and the electronic health record. Yearb Med Inform. 2014;9:97–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen ES, Sarkar IN. Mining the electronic health record for disease knowledge. Methods Mol Biol. 2014;1159:269–86.

    PubMed  Google Scholar 

  68. Gandomi A, Haider M. Beyond the hype: big data concepts, methods, and analytics. Int J Inf Manag. 2015;35(2):137–44.

    Google Scholar 

  69. Collen MF. Computer medical databases: the first six decades (1950–2010). Health informatics, vol. xix. London; New York: Springer; 2012. 288 p.

    Google Scholar 

  70. Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018;319(13):1317–8.

    PubMed  Google Scholar 

  71. Riley J. Understanding metadata. National Information Standards Organization, 2017.

    Google Scholar 

  72. Zhang AB, Gourley D. Creating digital collections: a practical guide. Chandos information professional series. 2009, Oxford: Chandos Pub xiv, 234 p.

    Google Scholar 

  73. Wilkinson MD, et al. The FAIR guiding principles for scientific data management and stewardship. Sci Data. 2016;3:160018.

    PubMed  PubMed Central  Google Scholar 

  74. Ramakrishnan R, Gehrke J. Database management systems, vol. xxxii. 3rd ed. Boston: McGraw-Hill; 2003. p. 1065.

    Google Scholar 

  75. Codd EF. The relational model for database management: version 2, vol. xxii. Reading, Mass: Addison-Wesley; 1990. 538 p

    Google Scholar 

  76. Jatana N, et al. A survey and comparison of relational and non-relational database. Int J Eng Res Tech. 2012;1(6):1–5.

    Google Scholar 

  77. Sholle ET, et al. Secondary use of Patients' electronic records (SUPER): an approach for meeting specific data needs of clinical and translational researchers. AMIA Annu Symp Proc. 2017;2017:1581–8.

    PubMed  Google Scholar 

  78. Stein B, Morrison A. The enterprise data lake: Better integration and deeper analytics.

    Google Scholar 

  79. Gorelik A. The enterprise big data lake: delivering the promise of big data and data science, vol. xiii. 1st ed. Sebastopol, California: iO’Reilly Media, Inc; 2019. 205 pages.

    Google Scholar 

  80. Ford E, et al. Extracting information from the text of electronic medical records to improve case detection: a systematic review. J Am Med Inform Assoc. 2016;23(5):1007–15.

    PubMed  PubMed Central  Google Scholar 

  81. Richesson RL, et al. Electronic health records based phenotyping in next-generation clinical trials: a perspective from the NIH health care systems Collaboratory. J Am Med Inform Assoc. 2013;20(e2):e226–31.

    PubMed  PubMed Central  Google Scholar 

  82. Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health records. J Am Med Inform Assoc. 2013;20(1):117–21.

    PubMed  Google Scholar 

  83. Shivade C, et al. A review of approaches to identifying patient phenotype cohorts using electronic health records. J Am Med Inform Assoc. 2014;21(2):221–30.

    PubMed  Google Scholar 

  84. Wei WQ, Denny JC. Extracting research-quality phenotypes from electronic health records to support precision medicine. Genome Med. 2015;7(1):41.

    PubMed  PubMed Central  Google Scholar 

  85. Richesson RL, et al. Clinical phenotyping in selected national networks: demonstrating the need for high-throughput, portable, and computational methods. Artif Intell Med. 2016;71:57–61.

    PubMed  PubMed Central  Google Scholar 

  86. Pendergrass SA, Crawford DC. Using electronic health records to generate phenotypes for research. Curr Protoc Hum Genet. 2019;100(1):e80.

    PubMed  Google Scholar 

  87. Harris PA, et al. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.

    PubMed  Google Scholar 

  88. Devine EB, et al. Health information exchange use (1990-2015): a systematic review. EGEMS (Wash DC). 2017;5(1):27.

    Google Scholar 

  89. Menachemi N, et al. The benefits of health information exchange: an updated systematic review. J Am Med Inform Assoc. 2018;25(9):1259–65.

    PubMed  PubMed Central  Google Scholar 

  90. Peters A, et al. The value of all-payer claims databases to states. N C Med J. 2014;75(3):211–3.

    PubMed  Google Scholar 

  91. Electronic Health Records-Based Phenotyping. Available from: https://rethinkingclinicaltrials.org/resources/ehr-phenotyping/.

  92. Jurafsky D, Martin JH. Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, Prentice Hall series in artificial intelligence, vol. xxxi. 2nd ed. Upper Saddle River, N.J: Pearson Prentice Hall; 2009. 988 p.

    Google Scholar 

  93. Allen JF. Natural language processing. 2003.

    Google Scholar 

  94. Filannino M, Uzuner O. Advancing the state of the art in clinical natural language processing through shared tasks. Yearb Med Inform. 2018;27(1):184–92.

    PubMed  PubMed Central  Google Scholar 

  95. Velupillai S, et al. Using clinical natural language processing for health outcomes research: overview and actionable suggestions for future advances. J Biomed Inform. 2018;88:11–9.

    PubMed  PubMed Central  Google Scholar 

  96. Cohen KB, Demner-Fushman D. Biomedical natural language processing. Natural language processing (NLP), vol. x. Amsterdam; Philadelphia: John Benjamins Publishing Company; 2014. 160 pages.

    Google Scholar 

  97. Doan S, et al. Natural language processing in biomedicine: a unified system architecture overview. Methods Mol Biol. 2014;1168:275–94.

    PubMed  Google Scholar 

  98. Conway M, Hu M, Chapman WW. Recent advances in using natural language processing to address public Health Research questions using social media and ConsumerGenerated data. Yearb Med Inform. 2019;28(1):208–17.

    PubMed  PubMed Central  Google Scholar 

  99. Hearst MA. Untangling text data mining. In Proceedings of the 37th annual meeting of the Association for Computational Linguistics on Computational Linguistics. 1999. Association for Computational Linguistics.

    Google Scholar 

  100. Zweigenbaum P, et al. Frontiers of biomedical text mining: current progress. Brief Bioinform. 2007;8(5):358–75.

    CAS  PubMed  Google Scholar 

  101. Shatkay H, Feldman R. Mining the biomedical literature in the genomic era: an overview. J Comput Biol. 2003;10(6):821–55.

    CAS  PubMed  Google Scholar 

  102. Kumar VD, Tipney HJ. Biomedical literature mining. Methods in molecular biology, vol. xii. New York: Humana Press; 2014. 288 p.

    Google Scholar 

  103. Nadkarni PM, Ohno-Machado L, Chapman WW. Natural language processing: an introduction. J Am Med Inform Assoc. 2011;18(5):544–51.

    PubMed  PubMed Central  Google Scholar 

  104. Wang Y, et al. Clinical information extraction applications: a literature review. J Biomed Inform. 2018;77:34–49.

    PubMed  Google Scholar 

  105. Available from: http://medicaltranscriptionwordhelp.synthasite.com/mental-status-exam-common-words-and-phrases.php.

  106. Hedley D, et al. Risk and protective factors underlying depression and suicidal ideation in autism Spectrum disorder. Depress Anxiety. 2018;35(7):648–57.

    PubMed  Google Scholar 

  107. Sentiment140 dataset with 1.6 million tweets. Available from: https://www.kaggle.com/kazanova/sentiment140.

  108. Russell SJ, Norvig P. Artificial intelligence: a modern approach. Fourth edition. Ed. Pearson series in artificial intelligence. Hoboken: Pearson. pages cm; 2021.

    Google Scholar 

  109. Shalev-Shwartz S, Ben-David S. Understanding machine learning: from theory to algorithms, vol. xvi. New York, NY, USA: Cambridge University Press; 2014. 397 pages.

    Google Scholar 

  110. Bishop CM. Pattern recognition and machine learning. Information science and statistics. New York: Springer; 2006. p. xx, 738 p.

    Google Scholar 

  111. Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719–31.

    PubMed  Google Scholar 

  112. Witten IH, Witten IH. Data mining: practical machine learning tools and techniques, vol. xxxii. 4th ed. Amsterdam: Elsevier; 2017. p. 621.

    Google Scholar 

  113. Maini V, Sabri S, Machine learning for humans. Online: https://medium.com/machine-learning-for-humans, 2017.

  114. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347–58.

    PubMed  Google Scholar 

  115. Wang F, Casalino LP, Khullar D. Deep learning in medicine-promise, Progress, and challenges. JAMA Intern Med. 2019;179(3):293–4.

    PubMed  Google Scholar 

  116. Esteva A, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9.

    CAS  PubMed  Google Scholar 

  117. Chen ES, Melton GB, Sarkar IN. Translating standards into practice: experiences and lessons learned in biomedicine and health care. J Biomed Inform. 2012;45(4):609–12.

    PubMed  Google Scholar 

  118. Dolin RH, Alschuler L. Approaching semantic interoperability in health level seven. J Am Med Inform Assoc. 2011;18(1):99–103.

    PubMed  Google Scholar 

  119. Overhage JM, et al. Validation of a common data model for active safety surveillance research. J Am Med Inform Assoc. 2012;19(1):54–60.

    PubMed  Google Scholar 

  120. Murphy SN, et al. Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2). J Am Med Inform Assoc. 2010;17(2):124–30.

    PubMed  PubMed Central  Google Scholar 

  121. Klann JG, et al. Data model harmonization for the all of us research program: transforming i2b2 data into the OMOP common data model. PLoS One. 2019;14(2):e0212463.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Schulz S, Stegwee R, Chronaki C. Standards in healthcare data, in fundamentals of clinical data science, P. Kubben, M. Dumontier, and A. Dekker, Editors. 2019: Cham (CH). p. 19–36.

    Google Scholar 

  123. Hammond WE. The making and adoption of health data standards. Health Aff (Millwood). 2005;24(5):1205–13.

    Google Scholar 

  124. About HL7. Available from: https://www.hl7.org/about/index.cfm?ref=nav.

  125. Benson T. Principles of health interoperability: snomed ct, hl7 and fhir. New York, NY: Springer Berlin Heidelberg. pages cm; 2016.

    Google Scholar 

  126. HL7 Implementation Guides. Available from: https://www.hl7.org/implement/standards/product_section.cfm?section=22&ref=nav.

  127. Interoperability Standards Advisory. Available from: https://www.healthit.gov/isa/.

  128. Cimino JJ. Review paper: coding systems in health care. Methods Inf Med. 1996;35(4–5):273–84.

    CAS  PubMed  Google Scholar 

  129. Cimino JJ, Zhu X. The practical impact of ontologies on biomedical informatics. Yearb Med Inform. 2006:124–35.

    Google Scholar 

  130. U.S. Core Data for Interoperability (USCDI). Available from: https://www.healthit.gov/isa/us-core-data-interoperability-uscdi.

  131. Bodenreider O, Cornet R, Vreeman DJ. Recent developments in clinical terminologies - SNOMED CT, LOINC, and RxNorm. Yearb Med Inform. 2018;27(1):129–39.

    PubMed  PubMed Central  Google Scholar 

  132. Lindberg C. The unified medical language system (UMLS) of the National Library of medicine. J Am Med Rec Assoc. 1990;61(5):40–2.

    CAS  PubMed  Google Scholar 

  133. McCray AT, Nelson SJ. The representation of meaning in the UMLS. Methods Inf Med. 1995;34(1–2):193–201.

    CAS  PubMed  Google Scholar 

  134. Noy NF, et al. BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 2009;37(Web Server issue):W170–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Musen MA, et al. The National Center for biomedical ontology. J Am Med Inform Assoc. 2012;19(2):190–5.

    PubMed  Google Scholar 

  136. McCray AT, Burgun A, Bodenreider O. Aggregating UMLS semantic types for reducing conceptual complexity. Stud Health Technol Inform. 2001;84(Pt 1):216–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Salsabili M, Kiogou S, Adam TJ. The evaluation of clinical classifications software using the National Inpatient Sample Database. AMIA Jt Summits Transl Sci Proc. 2020;2020:542–51.

    PubMed  PubMed Central  Google Scholar 

  138. Wu P, et al. Mapping ICD-10 and ICD-10-CM codes to Phecodes: workflow development and initial evaluation. JMIR Med Inform. 2019;7(4):e14325.

    PubMed  PubMed Central  Google Scholar 

  139. Wei WQ, et al. Evaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health record. PLoS One. 2017;12(7):e0175508.

    PubMed  PubMed Central  Google Scholar 

  140. Digital health. Scaling healthcare to the world. New York, NY: Springer Berlin Heidelberg. pages cm; 2017.

    Google Scholar 

  141. Digital Health. Available from: https://www.fda.gov/medical-devices/digital-health.

  142. World Health Organization, W.H., Recommendations on Digital Interventions for Health System Strengthening. 2019.

    Google Scholar 

  143. Osheroff JA, et al. A roadmap for national action on clinical decision support. J Am Med Inform Assoc. 2007;14(2):141–5.

    PubMed  PubMed Central  Google Scholar 

  144. Greenes RA. Clinical decision support: the road to broad adoption, vol. xxxix. 2nd ed. Amsterdam Boston: Academic; 2014. p. 887.

    Google Scholar 

  145. Tcheng JE, National Academy of Medicine (U.S.). Optimizing strategies for clinical decision support: summary of a meeting series, in The learning health system series. Washington, DC: National Academy of Medicine; 2017. p. 1 online resource

    Google Scholar 

  146. Osheroff JA, Healthcare Information and Management Systems Society. Improving outcomes with clinical decision support: an implementer's guide, vol. xxiii. 2nd ed. Chicago, IL: HIMSS; 2012. p. 323.

    Google Scholar 

  147. Bell GC, et al. Development and use of active clinical decision support for preemptive pharmacogenomics. J Am Med Inform Assoc. 2014;21(e1):e93–9.

    PubMed  Google Scholar 

  148. Cook DA, et al. Context-sensitive decision support (infobuttons) in electronic health records: a systematic review. J Am Med Inform Assoc. 2017;24(2):460–8.

    PubMed  Google Scholar 

  149. Introduction to Software Engineering/Process/Life Cycle. Available from: https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Process/Life_Cycle.

  150. Kushniruk A. Evaluation in the design of health information systems: application of approaches emerging from usability engineering. Comput Biol Med. 2002;32(3):141–9.

    PubMed  Google Scholar 

  151. Sommerville I. Software engineering, vol. xv. 9th ed. Boston: Pearson; 2011. p. 773.

    Google Scholar 

  152. Luna D, et al. User-centered design to develop clinical applications. Literature review. Stud Health Technol Inform. 2015;216:967.

    PubMed  Google Scholar 

  153. Kushniruk A, Nohr C. Participatory design, user involvement and health IT evaluation. Stud Health Technol Inform. 2016;222:139–51.

    PubMed  Google Scholar 

  154. Payne PR. Chapter 1: Biomedical knowledge integration. PLoS Comput Biol. 2012;8(12):e1002826.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Shortliffe EH, et al. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Comput Biomed Res. 1975;8(4):303–20.

    CAS  PubMed  Google Scholar 

  156. Pryor TA, Hripcsak G. The Arden syntax for medical logic modules. Int J Clin Monit Comput. 1993;10(4):215–24.

    CAS  PubMed  Google Scholar 

  157. Hripcsak G. Writing Arden syntax medical logic modules. Comput Biol Med. 1994;24(5):331–63.

    CAS  PubMed  Google Scholar 

  158. Wright A, Sittig DF. A four-phase model of the evolution of clinical decision support architectures. Int J Med Inform. 2008;77(10):641–9.

    PubMed  PubMed Central  Google Scholar 

  159. Wright A, Sittig DF. A framework and model for evaluating clinical decision support architectures. J Biomed Inform. 2008;41(6):982–90.

    PubMed  PubMed Central  Google Scholar 

  160. Loya SR, et al. Service oriented architecture for clinical decision support: a systematic review and future directions. J Med Syst. 2014;38(12):140.

    PubMed  PubMed Central  Google Scholar 

  161. Mandl KD, et al. The SMART platform: early experience enabling substitutable applications for electronic health records. J Am Med Inform Assoc. 2012;19(4):597–603.

    PubMed  PubMed Central  Google Scholar 

  162. Mandel JC, et al. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records. J Am Med Inform Assoc. 2016;23(5):899–908.

    PubMed  PubMed Central  Google Scholar 

  163. Spineth M, Rappelsberger A, Adlassnig KP. Implementing CDS hooks communication in an Arden-syntax-based clinical decision support platform. Stud Health Technol Inform. 2018;255:165–9.

    PubMed  Google Scholar 

  164. Dolin RH, Boxwala A, Shalaby J. A pharmacogenomics clinical decision support service based on FHIR and CDS hooks. Methods Inf Med. 2018;57(S 02):e115–23.

    CAS  PubMed  Google Scholar 

  165. Sayeed R, Gottlieb D, Mandl KD. SMART markers: collecting patient-generated health data as a standardized property of health information technology. NPJ Digit Med. 2020;3:9.

    PubMed  PubMed Central  Google Scholar 

  166. Pelayo S, et al. Human factors and sociotechnical issues. Yearb Med Inform. 2019;28(1):78–80.

    PubMed  PubMed Central  Google Scholar 

  167. Patel VL, Kannampallil TG. Human factors and health information technology: current challenges and future directions. Yearb Med Inform. 2014;9:58–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kushniruk A, Nohr C, Borycki E. Human factors for more usable and safer health information technology: where are we now and where do we go from here? Yearb Med Inform. 2016;1:120–5.

    Google Scholar 

  169. Turner P, Kushniruk A, Nohr C. Are we there yet? Human factors knowledge and health information technology - the challenges of implementation and impact. Yearb Med Inform. 2017;26(1):84–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Carayon P, et al. Human factors systems approach to healthcare quality and patient safety. Appl Ergon. 2014;45(1):14–25.

    PubMed  Google Scholar 

  171. Carayon P, et al. Work system design for patient safety: the SEIPS model. Qual Saf Health Care. 2006;15(Suppl 1):i50–8.

    PubMed  PubMed Central  Google Scholar 

  172. Zhang J, Walji MF. TURF: toward a unified framework of EHR usability. J Biomed Inform. 2011;44(6):1056–67.

    PubMed  Google Scholar 

  173. Kushniruk AW, Patel VL. Cognitive and usability engineering methods for the evaluation of clinical information systems. J Biomed Inform. 2004;37(1):56–76.

    PubMed  Google Scholar 

  174. Borycki EM, et al. Use of qualitative methods across the software development lifecycle in health informatics. Stud Health Technol Inform. 2011;164:293–7.

    PubMed  Google Scholar 

  175. Friedman CP, Wyatt J. Evaluation methods in biomedical informatics, Health informatics, vol. xvii. 2nd ed. New York: Springer; 2006. p. 386.

    Google Scholar 

  176. Ammenwerth E, Rigby M. Evidence-based health informatics: promoting safety and efficency through scientific methods and ethical policy. Studies in health technology and informatics, vol. xv. Amsterdam; Washington, DC: IOS Press; 2016. 369 pages.

    Google Scholar 

  177. Cognitive informatics in health and biomedicine. Understanding and modeling health behaviors. New York, NY: Springer Berlin Heidelberg. pages cm; 2017.

    Google Scholar 

  178. Eccles M, Mittman B. Welcome to implementation science. Implement Sci. 2006:1(1).

    Google Scholar 

  179. Bauer MS, et al. An introduction to implementation science for the non-specialist. BMC Psychol. 2015;3:32.

    PubMed  PubMed Central  Google Scholar 

  180. Bauer MS, Kirchner J. Implementation science: what is it and why should I care? Psychiatry Res. 2020;283:112376.

    PubMed  Google Scholar 

  181. Nilsen P. Making sense of implementation theories, models and frameworks. Implement Sci. 2015;10:53.

    PubMed  PubMed Central  Google Scholar 

  182. Tabak RG, et al. Bridging research and practice: models for dissemination and implementation research. Am J Prev Med. 2012;43(3):337–50.

    PubMed  PubMed Central  Google Scholar 

  183. World Health Organization, Monitoring and evaluating digital health interventions: a practical guide to conducting research and assessment. 2016.

    Google Scholar 

  184. Murray E, et al. Evaluating digital health interventions: key questions and approaches. Am J Prev Med. 2016;51(5):843–51.

    PubMed  PubMed Central  Google Scholar 

  185. Institute of Medicine (U.S.). Committee for Evaluating Medical Technologies in Clinical Use., Institute of Medicine (U.S.). Division of health sciences policy., and Institute of Medicine (U.S.). division of health promotion and disease prevention., Assessing medical technologies, vol. xvii. Washington, D.C.: National Academy Press; 1985. p. 573.

    Google Scholar 

  186. Gaglio B, Shoup JA, Glasgow RE. The RE-AIM framework: a systematic review of use over time. Am J Public Health. 2013;103(6):e38–46.

    PubMed  PubMed Central  Google Scholar 

  187. Glasgow RE, et al. RE-AIM planning and evaluation framework: adapting to new science and practice with a 20-year review. Front Public Health. 2019;7:64.

    PubMed  PubMed Central  Google Scholar 

  188. Feldstein AC, Glasgow RE. A practical, robust implementation and sustainability model (PRISM) for integrating research findings into practice. Jt Comm J Qual Patient Saf. 2008;34(4):228–43.

    PubMed  Google Scholar 

  189. Damschroder LJ, et al. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implement Sci. 2009;4:50.

    PubMed  PubMed Central  Google Scholar 

  190. Tharwat A. Classification assessment methods. Applied Computing and Informatics, 2018.

    Google Scholar 

  191. Hamilton AB, Finley EP. Qualitative methods in implementation research: an introduction. Psychiatry Res. 2019;280:112516.

    PubMed  PubMed Central  Google Scholar 

  192. Anderson JG, Aydin CE. Evaluating the organizational impact of healthcare information systems. 2nd ed. health informatics series. New York, NY: Springer. xv; 2005. p. 344.

    Google Scholar 

  193. Cummings E, Borycki EM. Grounded theory evolution and its application in health informatics. Stud Health Technol Inform. 2011;164:286–92.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth S. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, E.S. (2021). What Is Informatics?. In: Tenenbaum, J.D., Ranallo, P.A. (eds) Mental Health Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-70558-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70558-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70557-2

  • Online ISBN: 978-3-030-70558-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics