Skip to main content

Bioinformatics in Mental Health: Deriving Knowledge from Molecular and Cellular Data

  • Chapter
  • First Online:
Mental Health Informatics

Part of the book series: Health Informatics ((HI))

Abstract

Translational bioinformatics plays a crucial role in biomarker discovery as it helps to bridge the gap between bench research and bedside clinical applications. Thanks to newer and faster molecular profiling technologies and decreasing costs, there are many opportunities for researchers to explore the molecular and physiological mechanisms of diseases. Biomarker discovery, or the identification of observable indicators of underlying biological state, enables researchers to characterize patients better, predict treatment responses and monitor disease outcomes. In addition, biomarker tests specialized for a disease can enable early detection and intervention or prevention.

Due to increasing prevalence and rising treatment costs, mental health disorders have become an important area for biomarker discovery and for improved patient treatment and care. Exploration of underlying biological mechanisms is key to the understanding of pathogenesis and pathophysiology of mental disorders.

In this chapter, we cover various data types commonly used in bioinformatics, file formats, and common methods for acquisition of such data. We also address the strengths and limitations of the different types of data used in biomarker discovery. We cover data and knowledge related to molecular and cellular phenomena, and their relationships to other phenomena in mental health. Finally, we address methods to transform molecular and cellular data into meaningful information about higher level human function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. EMBL-EBI. What is bioinformatics ? May 21 2020; Available from: https://www.ebi.ac.uk/training/online/course/bioinformatics-terrified/what-bioinformatics-0.

  2. TowardsDataScience. What is bioinformatics. 2017; Available from: https://towardsdatascience.com/what-is-bioinformatics-703170763999

  3. Biospace. Careers in bioinformatics: hot and getting hotter. 2019. May 21 2020; Available from: https://www.biospace.com/article/careers-in-bioinformatics-hot-and-getting-hotter.

  4. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tenenbaum JD, et al. Translational bioinformatics in mental health: open access data sources and computational biomarker discovery. Brief Bioinform. 2019;20(3):842–56.

    Article  PubMed  Google Scholar 

  6. Rush AJ, Ibrahim HM. A Clinician’s perspective on biomarkers. Focus (Am Psychiatr Publ). 2018;16(2):124–34.

    Google Scholar 

  7. evariant.com. What is healthcare big data? 2019. Dec 23 2019; Available from: https://www.evariant.com/faq/what-is-healthcare-big-data.

  8. PRNewswire. $11.45 bn big data in healthcare market, 2025. 2018 Dec 23 2019; Available from:https://www.prnewswire.com/news-releases/1145-bn-big-data-in-healthcare-market-2025-300623544.html.

  9. Channels IE. How data analytics helps mental health issues. Dec 23 2019; Available from:https://channels.theinnovationenterprise.com/articles/how-social-media-analysis-can-improve-mental-health.

  10. Wikipedia. Bioinformatics. Dec 23 2019; Available from: https://en.wikipedia.org/wiki/Bioinformatics.

  11. NLM. What is the precision medicine initiative? Dec 24 2019; Available from: https://ghr.nlm.nih.gov/primer/precisionmedicine/initiative.

  12. Wikipedia. Biomarker. Dec 24 2019; Available from: https://en.wikipedia.org/wiki/Biomarker.

  13. Lin Y, et al. Computer-aided biomarker discovery for precision medicine: data resources, models and applications. Brief Bioinform. 2019;20(3):952–75.

    Article  CAS  PubMed  Google Scholar 

  14. Cook I. Biomarkers in psychiatry: potentials, pitfalls, and pragmatics. Primary Psychiatry. 2008;15(3):54–9.

    Google Scholar 

  15. Sokolowska I, et al. The potential of biomarkers in psychiatry: focus on proteomics. J Neural Transm (Vienna). 2015;122(Suppl 1):S9–18.

    Article  CAS  Google Scholar 

  16. Herron JW, Nerurkar L, Cavanagh J. Neuroimmune Biomarkers in Mental Illness. Curr Top Behav Neurosci. 2018;40:45–78.

    Article  PubMed  Google Scholar 

  17. Harris KM, Schorpp KM. Integrating biomarkers in social stratification and Health Research. Annu Rev Sociol. 2018;44:361–86.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Biologically-inspired biomarkers for mental disorders. EBioMedicine. 2017;17:1–2.

    Google Scholar 

  19. Payne PRO, Embi, PJ, Translational informatics: realizing the promise of knowledge-driven healthcare. 2014.

    Google Scholar 

  20. NHGRI. Genomics and medicine. 2019. April 27, 2020; Available from: https://www.genome.gov/health/Genomics-and-Medicine.

  21. NHGRI. The cost of sequencing a human genome. Feb 7 2020; Available from: https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost.

  22. Wikipedia. $1,000 genome. Sep 14 2020; Available from: https://en.wikipedia.org/wiki/$1,000_genome.

  23. Alexander Arguello P, et al. From genetics to biology: advancing mental health research in the genomics ERA. Mol Psychiatry. 2019;24(11):1576–82.

    Article  CAS  PubMed  Google Scholar 

  24. ScienceDaily. Largest study of its kind reveals that many psychiatric disorders arise from common genes. 2019. May 21 2020; Available from: https://www.sciencedaily.com/releases/2019/12/191212142634.htm.

  25. Cross-Disorder Group of the Psychiatric Genomics Consortium. Electronic address, p.m.h.e. and C. Cross-disorder Group of the Psychiatric Genomics. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell. 2019;179(7):1469–82. e11

    Article  CAS  Google Scholar 

  26. Sabatello M. Psychiatric genomics and public mental health in the young mind. Am J Bioeth. 2017;17(4):27–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gandal MJ, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359(6376):693–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pantazatos SP, et al. Whole-transcriptome brain expression and exon-usage profiling in major depression and suicide: evidence for altered glial, endothelial and ATPase activity. Mol Psychiatry. 2017;22(5):760–73.

    Article  CAS  PubMed  Google Scholar 

  29. NLM. Gene. April 27, 2020; Available from: https://ghr.nlm.nih.gov/primer/basics/gene.

  30. Wikipedia. Gene. April 27 2020; Available from: https://en.wikipedia.org/wiki/Gene.

  31. NLM. Can genes be turned on and off in cells? April 27 2020; Available from: https://ghr.nlm.nih.gov/primer/howgeneswork/geneonoff.

  32. Wang W, Wang GZ. Understanding molecular mechanisms of the brain through transcriptomics. Front Physiol. 2019;10:214.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kathuria A, et al. Transcriptome analysis and functional characterization of cerebral organoids in bipolar disorder. Genome Med. 2020;12(1):34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou Y, et al. Interactome analysis reveals ZNF804A, a schizophrenia risk gene, as a novel component of protein translational machinery critical for embryonic neurodevelopment. Mol Psychiatry. 2018;23(4):952–62.

    Article  CAS  PubMed  Google Scholar 

  35. Park DI, Turck CW. Interactome studies of psychiatric disorders. Adv Exp Med Biol. 2019;1118:163–73.

    Article  CAS  PubMed  Google Scholar 

  36. Xiao Y, et al. The DNA methylome and transcriptome of different brain regions in schizophrenia and bipolar disorder. PLoS One. 2014;9(4):e95875.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kohen R, et al. Transcriptome profiling of human hippocampus dentate gyrus granule cells in mental illness. Transl Psychiatry. 2014;4:e366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang X, Cairns MJ. Understanding complex transcriptome dynamics in schizophrenia and other neurological diseases using RNA sequencing. Int Rev Neurobiol. 2014;116:127–52.

    Article  PubMed  Google Scholar 

  39. ENCODE. ENCODE: Deciphering function in the human genome. Sep 16 2020; Available from: https://www.genome.gov/27551473/genome-advance-of-the-month-encode-deciphering-function-in-the-human-genome#.

  40. NLM. Protein. April 27 2020; Available from: https://ghr.nlm.nih.gov/primer/howgeneswork/protein.

  41. Wikipedia. Reverse phase protein lysate microarray. April 27 2020; Available from: https://en.wikipedia.org/wiki/Reverse_phase_protein_lysate_microarray.

  42. Bot M, et al. Serum proteomic profiling of major depressive disorder. Transl Psychiatry. 2015;5:e599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lista S, et al. Evolving relevance of Neuroproteomics in Alzheimer’s disease. Methods Mol Biol. 2017;1598:101–15.

    Article  CAS  PubMed  Google Scholar 

  44. Brinkmalm A, et al. Explorative and targeted neuroproteomics in Alzheimer’s disease. Biochim Biophys Acta. 2015;1854(7):769–78.

    Article  CAS  PubMed  Google Scholar 

  45. Liao L, et al. Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection. J Biol Chem. 2004;279(35):37061–8.

    Article  CAS  PubMed  Google Scholar 

  46. Metabolon. About metabolomics. April 27 2020; Available from: https://www.metabolon.com/what-we-do/about-metabolomics.

  47. EMBL-EBI. Small molecules. Jan 8 2020; Available from: https://www.ebi.ac.uk/training/online/course/introduction-metabolomics/what-metabolomics/no-glossary-small-molecules-no-glossary.

  48. Roberts LD, et al., Targeted metabolomics. Curr Protoc Mol Biol, 2012. Chapter 30: Unitas 30.2.1–24.

    Google Scholar 

  49. Shah SH, Kraus WE, Newgard CB. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation. 2012;126(9):1110–20.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Emwas AH, et al. NMR spectroscopy for metabolomics research. Metabolites. 2019;9(7):123.

    Article  CAS  PubMed Central  Google Scholar 

  51. MayoClinic. Targeted metabolomics. 2020. Aug 18 2020; Available from: https://www.mayo.edu/research/core-resources/metabolomics-core/services/targeted-metabolomics.

  52. Mapstone M, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 2014;20(4):415–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martins-de-Souza D, et al. Identification of proteomic signatures associated with depression and psychotic depression in post-mortem brains from major depression patients. Transl Psychiatry. 2012;2:e87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kahl KG, Stapel B, Frieling H. Link between depression and cardiovascular diseases due to epigenomics and proteomics: focus on energy metabolism. Prog Neuro-Psychopharmacol Biol Psychiatry. 2019;89:146–57.

    Article  CAS  Google Scholar 

  55. Humer E, Probst T, Pieh C. Metabolomics in psychiatric disorders: What we learn from animal models. Meta. 2020;10(2):72.

    CAS  Google Scholar 

  56. NLM. Epigenome. April 27 2020; Available from: https://ghr.nlm.nih.gov/primer/howgeneswork/epigenome.

  57. Teng M, Irizarry RA. Accounting for GC-content bias reduces systematic errors and batch effects in ChIP-seq data. Genome Res. 2017;27(11):1930–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wikipedia. ChIP sequencing. 2020. May 21 2020; Available from: https://en.wikipedia.org/wiki/ChIP_sequencing.

  59. ScienceDirect. ChIP-sequencing. 2013. May 21, 2020; Available from: https://www.sciencedirect.com/topics/neuroscience/chip-sequencing.

  60. Nature. Transcription factor. 2014. May 21 2020; Available from: https://www.nature.com/scitable/definition/transcription-factor-167/.

  61. Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10(10):669–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kular L, Kular S. Epigenetics applied to psychiatry: clinical opportunities and future challenges. Psychiatry Clin Neurosci. 2018;72(4):195–211.

    Article  PubMed  Google Scholar 

  63. Palma-Gudiel H, Fananas L. An integrative review of methylation at the serotonin transporter gene and its dialogue with environmental risk factors, psychopathology and 5-HTTLPR. Neurosci Biobehav Rev. 2017;72:190–209.

    Article  CAS  PubMed  Google Scholar 

  64. Nievergelt CM, et al. Genomic approaches to posttraumatic stress disorder: the psychiatric genomic consortium initiative. Biol Psychiatry. 2018;83(10):831–9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kumsta R. The role of epigenetics for understanding mental health difficulties and its implications for psychotherapy research. Psychol Psychother. 2019;92(2):190–207.

    Article  PubMed  Google Scholar 

  66. Augustin R, et al. Computational identification and experimental validation of microRNAs binding to the Alzheimer-related gene ADAM10. BMC Med Genet. 2012;13:35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Elsivier. Pathway studio. Sep 16 2020; Available from: https://www.elsevier.com/solutions/pathway-studio-biological-research.

  68. Issler O, Chen A. Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci. 2015;16(4):201–12.

    Article  CAS  PubMed  Google Scholar 

  69. Narahari A, Hussain M, Sreeram V. MicroRNAs as biomarkers for psychiatric conditions: a review of current research. Innov Clin Neurosci. 2017;14(1–2):53–5.

    PubMed  PubMed Central  Google Scholar 

  70. Allen L, Dwivedi Y. MicroRNA mediators of early life stress vulnerability to depression and suicidal behavior. Mol Psychiatry. 2020;25(2):308–20.

    Article  CAS  PubMed  Google Scholar 

  71. van den Berg MMJ, et al. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog Neurobiol. 2020;185:101732.

    Article  PubMed  Google Scholar 

  72. Roser AE, et al. Circulating miRNAs as diagnostic biomarkers for Parkinson’s disease. Front Neurosci. 2018;12:625.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang X, Gardiner EJ, Cairns MJ. Optimal consistency in microRNA expression analysis using reference-gene-based normalization. Mol BioSyst. 2015;11(5):1235–40.

    Article  CAS  PubMed  Google Scholar 

  74. Beveridge NJ, Cairns MJ. MicroRNA dysregulation in schizophrenia. Neurobiol Dis. 2012;46(2):263–71.

    Article  CAS  PubMed  Google Scholar 

  75. Wang J, et al. microRNAs as novel biomarkers of schizophrenia (review). Exp Ther Med. 2014;8(6):1671–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Song L, et al. CINdex: a Bioconductor package for analysis of chromosome instability in DNA copy number data. Cancer Inform. 2017;16:1176935117746637.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Cuccaro D, et al. Copy number variants in Alzheimer’s disease. J Alzheimers Dis. 2017;55(1):37–52.

    Article  CAS  PubMed  Google Scholar 

  78. Nothen MM, et al. New findings in the genetics of major psychoses. Dialogues Clin Neurosci. 2010;12(1):85–93.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell. 2012;148(6):1223–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wikipedia. Image segmentation. 2020. May 21 2020; Available from: https://en.wikipedia.org/wiki/Image_segmentation.

  81. Wikipedia. Medical imaging. 2020. May 21 2020; Available from: https://en.wikipedia.org/wiki/Medical_imaging.

  82. Davatzikos C, et al. Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. J Med Imaging (Bellingham). 2018;5(1):011018.

    Google Scholar 

  83. Wolf I, et al. The medical imaging interaction toolkit. Med Image Anal. 2005;9(6):594–604.

    Article  PubMed  Google Scholar 

  84. Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jiang W, King TZ, Turner JA. Imaging genetics towards a refined diagnosis of schizophrenia. Front Psych. 2019;10:494.

    Article  Google Scholar 

  86. Whitfield-Gabrieli S, et al. Brain connectomics predict response to treatment in social anxiety disorder. Mol Psychiatry. 2016;21(5):680–5.

    Article  CAS  PubMed  Google Scholar 

  87. Okano K, et al. Real-time fMRI feedback impacts brain activation, results in auditory hallucinations reduction: part 1: superior temporal gyrus -preliminary evidence. Psychiatry Res. 2020;286:112862.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wikiversity. Microbiome and mental health. Jan 14 2020; Available from: https://en.wikiversity.org/wiki/Microbiome_and_Mental_Health.

  89. Bastiaanssen TFS, et al. Gutted! Unraveling the role of the microbiome in major depressive disorder. Harv Rev Psychiatry. 2020;28(1):26–39.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Skonieczna-Zydecka K, et al. Microbiome-the missing link in the gut-brain axis: Focus on its role in gastrointestinal and mental health. J Clin Med. 2018;7(12):521.

    Article  PubMed Central  Google Scholar 

  91. Rottig S, Rujescu D. Microbiome in psychiatry: where will we go? Eur Arch Psychiatry Clin Neurosci. 2018;268(1):1–2.

    Article  PubMed  Google Scholar 

  92. Cryan JF. Stress and the microbiota-gut-brain Axis: an evolving concept in psychiatry. Can J Psychiatr. 2016;61(4):201–3.

    Article  Google Scholar 

  93. Licinio J, Wong ML. The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatry. 1999;4(4):317–27.

    Article  CAS  PubMed  Google Scholar 

  94. Wong ML, et al. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry. 2016;21(6):797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ashburner M, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. EBI. Gene set enrichment analysis and pathway analysis. 2020 May 21 2020; Available from: https://www.ebi.ac.uk/training/online/course/functional-genomics-ii-common-technologies-and-data-analysis-methods/gene-set-enrichment.

  97. EBI. Gene ontology. 2020 May 21 2020; Available from: https://www.ebi.ac.uk/training/online/glossary/gene-ontology.

  98. NIH. Systems biology as defined by NIH. April 27 2020; Available from: https://irp.nih.gov/catalyst/v19i6/systems-biology-as-defined-by-nih.

  99. ISB. What is systems biology? April 27, 2020; Available from: https://isbscience.org/about/what-is-systems-biology/.

  100. Harvard. Welcome to the department of systems biology. April 27 2020; Available from: https://sysbio.med.harvard.edu/.

  101. Kitano H. Systems biology: a brief overview. Science. 2002;295(5560):1662–4.

    Article  CAS  PubMed  Google Scholar 

  102. Wikipedia. Systems biology. April 27 2020; Available from: https://en.wikipedia.org/wiki/Systems_biology.

  103. Gutierrez Najera NA, Resendis-Antonio O, Nicolini H. “Gestaltomics”: Systems biology schemes for the study of neuropsychiatric diseases. Front Physiol. 2017;8:286.

    Article  PubMed  PubMed Central  Google Scholar 

  104. NBTS. Tumor types: Understanding brain tumors. Sep 16 2020; Available from: https://braintumor.org/brain-tumor-information/understanding-brain-tumors/tumor-types/.

  105. Behnan J, Finocchiaro G, Hanna G. The landscape of the mesenchymal signature in brain tumours. Brain. 2019;142(4):847–66.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Verhaak RG, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. van den Bent MJ. Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective. Acta Neuropathol. 2010;120(3):297–304.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Louis DN, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.

    Article  PubMed  Google Scholar 

  109. DeWeerdt S. The genomics of brain cancer. Nature. 2018;561(7724):S54–5.

    Article  CAS  PubMed  Google Scholar 

  110. APA. What is Alzheimer’s disease? Dec 28 2019]; Available from: https://www.psychiatry.org/patients-families/alzheimers/what-is-alzheimers-disease.

  111. Di Resta C, Ferrari M. New molecular approaches to Alzheimer’s disease. Clin Biochem. 2019;72:81–6.

    Article  PubMed  CAS  Google Scholar 

  112. NIA. Alzheimer’s disease genetics fact sheet. Dec 31 2019; Available from: https://www.nia.nih.gov/health/alzheimers-disease-genetics-fact-sheet.

  113. Verheijen J, Sleegers K. Understanding Alzheimer disease at the Interface between genetics and transcriptomics. Trends Genet. 2018;34(6):434–47.

    Article  CAS  PubMed  Google Scholar 

  114. NIA. What happens to the brain in Alzheimer’s disease? Aug 18, 2020; Available from: https://www.nia.nih.gov/health/what-happens-brain-alzheimers-disease.

  115. Huang CC, et al. The combination of functional and structural MRI is a potential screening tool in Alzheimer’s disease. Front Aging Neurosci. 2018;10:251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jones KA, Menniti FS, Sivarao DV. Translational psychiatry--light at the end of the tunnel. Ann N Y Acad Sci. 2015;1344:1–11.

    Article  CAS  PubMed  Google Scholar 

  117. NIMH. Towards a genomic psychiatry: Recommendations of the genomics workgroup of the NAMHC. 2018. May 21 2020. Available from: https://www.nimh.nih.gov/about/director/messages/2018/towards-a-genomic-psychiatry-recommendations-of-the-genomics-workgroup-of-the-namhc.shtml.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krithika Bhuvaneshwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhuvaneshwar, K., Gusev, Y. (2021). Bioinformatics in Mental Health: Deriving Knowledge from Molecular and Cellular Data. In: Tenenbaum, J.D., Ranallo, P.A. (eds) Mental Health Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-70558-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70558-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70557-2

  • Online ISBN: 978-3-030-70558-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics