Skip to main content

Data to Information: Computational Models and Analytic Methods

  • Chapter
  • First Online:
Mental Health Informatics

Part of the book series: Health Informatics ((HI))

  • 842 Accesses

Abstract

Computational models and analytic methods are increasingly important in the modeling and analyses of mental health and illness. The increased availability of data, the development of a wide range of analytic methods, and powerful and ubiquitous computing capability provide an unprecedented opportunity to develop computational models. Broadly speaking, two types of computational models are used in the context of mental health. Theory-based approaches generate explanatory models that describe the mechanisms of neural or psychological processes. Data-driven approaches typically extract predictive relations between variables and relevant outcomes or uncover patterns such as disease subtypes in data. Machine learning methods are increasingly used to develop models, especially data-driven models. This chapter will describe key methods and application examples, the workflow in machine learning, data preprocessing, feature selection methods, and the main categories of machine learning algorithms including supervised learning, unsupervised learning, semi-supervised learning, and deep learning. In addition, this chapter will briefly describe standards for reporting models and ethical and safety issues related to the development and use of computational models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stoddard J, Jones M. Computational modeling in pediatric mental health. J Am Acad Child Adolesc Psychiatry. 2019;58(5):471.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stephan KE, Bach DR, Fletcher PC, Flint J, Frank MJ, Friston KJ, et al. Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. Lancet Psychiatry. 2016;3(1):77–83.

    Article  PubMed  Google Scholar 

  3. Kurth-Nelson Z, O’Doherty J, Barch D, Deneve S, Durstewitz D, Frank M, et al. Computational approaches for studying mechanisms of psychiatric disorders. Computational psychiatry: New perspectives on mental illness. 2016:77–99.

    Google Scholar 

  4. Mukai J, Tamura M, Fénelon K, Rosen AM, Spellman TJ, Kang R, et al. Molecular substrates of altered axonal growth and brain connectivity in a mouse model of schizophrenia. Neuron. 2015;86(3):680–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Trull TJ, Ebner-Priemer U. Ambulatory assessment. Annu Rev Clin Psychol. 2013;9:151–76.

    Article  PubMed  Google Scholar 

  6. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J, et al. Impact of the Alzheimer's disease neuroimaging initiative, 2004 to 2014. Alzheimers Dement. 2015;11(7):865–84.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Investigators AoURP. The “All of Us” research program. N Engl J Med. 2019;381(7):668–76.

    Google Scholar 

  8. Consortium H. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature. 2019;574(7777):187.

    Google Scholar 

  9. Lanillos P, Oliva D, Philippsen A, Yamashita Y, Nagai Y, Cheng G. A review on neural network models of schizophrenia and autism spectrum disorder. Neural Netw. 2020;122:338–63.

    Article  PubMed  Google Scholar 

  10. Bennett D, Silverstein SM, Niv Y. The two cultures of computational psychiatry. JAMA Psychiat. 2019;76(6):563–4.

    Article  Google Scholar 

  11. Huys QJ, Maia TV, Frank MJ. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci. 2016;19(3):404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maia TV, Huys QJ, Frank MJ. Theory-based computational psychiatry. Biol Psychiatry. 2017;82(6):382–4.

    Article  PubMed  Google Scholar 

  13. Maia TV, Frank MJ. From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci. 2011;14(2):154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chang B, Choi Y, Jeon M, Lee J, Han K-M, Kim A, et al. ARPNet: antidepressant response prediction network for major depressive disorder. Genes. 2019;10(11):907.

    Article  CAS  PubMed Central  Google Scholar 

  15. Huys QJ. Advancing clinical improvements for patients using the theory-driven and data-driven branches of computational psychiatry. JAMA Psychiat. 2018;75(3):225–6.

    Article  Google Scholar 

  16. Haslbeck J, Ryan O, Robinaugh D, Waldorp L, Borsboom D. Modeling psychopathology: from data models to formal theories. 2019.

    Google Scholar 

  17. Robinaugh D, Haslbeck J, Waldorp L, Kossakowski J, Fried EI, Millner A, et al. Advancing the network theory of mental disorders: a computational model of panic disorder. 2019.

    Google Scholar 

  18. Steimer T. The biology of fear-and anxiety-related behaviors. Dialogues Clin Neurosci. 2002;4(3):231.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moffa G, Catone G, Kuipers J, Kuipers E, Freeman D, Marwaha S, et al. Using directed acyclic graphs in epidemiological research in psychosis: an analysis of the role of bullying in psychosis. Schizophr Bull. 2017;43(6):1273–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Glymour C, Zhang K, Spirtes P. Review of causal discovery methods based on graphical models. Front Genet. 2019;10:524.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Glymour CN, Cooper GF. Computation, Causation, and Discovery. AAAI Press; 1999.

    Google Scholar 

  22. Green MJ, Girshkin L, Kremerskothen K, Watkeys O, Quidé Y. A systematic review of studies reporting data-driven cognitive subtypes across the psychosis spectrum. Neuropsychol Rev. 2019:1–15.

    Google Scholar 

  23. Salvador R, Radua J, Canales-Rodríguez EJ, Solanes A, Sarró S, Goikolea JM, et al. Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis. PLoS One. 2017;12(4):e0175683.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rezaii N, Walker E, Wolff P. A machine learning approach to predicting psychosis using semantic density and latent content analysis. NPJ Schizophr. 2019;5(1):1–12.

    Article  CAS  Google Scholar 

  25. Gonsai N, Amin V, Mendpara C, Speth R, Hale G. Effects of dopamine receptor antagonist antipsychotic therapy on blood pressure. J Clin Pharm Ther. 2018;43(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  26. Dawes SE, Jeste DV, Palmer BW. Cognitive profiles in persons with chronic schizophrenia. J Clin Exp Neuropsychol. 2011;33(8):929–36.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Labarère J, Bertrand R, Fine MJ. How to derive and validate clinical prediction models for use in intensive care medicine. Intensive Care Med. 2014;40(4):513–27.

    Article  PubMed  Google Scholar 

  28. Hendriksen JM, Geersing G-J, Moons KG, de Groot JA. Diagnostic and prognostic prediction models. J Thromb Haemost. 2013;11:129–41.

    Article  PubMed  Google Scholar 

  29. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3(Mar):1157–82.

    Google Scholar 

  30. Kohavi R, Sommerfield D. Feature subset selection using the wrapper method: overfitting and dynamic search space topology. KDD; 1995.

    Google Scholar 

  31. Tay D, Poh CL, Goh C, Kitney RI. A biological continuum based approach for efficient clinical classification. J Biomed Inform. 2014;47:28–38.

    Article  PubMed  Google Scholar 

  32. Koutsouleris N, Kambeitz-Ilankovic L, Ruhrmann S, Rosen M, Ruef A, Dwyer DB, et al. Prediction models of functional outcomes for individuals in the clinical high-risk state for psychosis or with recent-onset depression: a multimodal, multisite machine learning analysis. JAMA Psychiat. 2018;75(11):1156–72.

    Article  Google Scholar 

  33. Raghu VK, Ge X, Chrysanthis PK, Benos PV, editors. Integrated theory-and data-driven feature selection in gene expression data analysis. 2017 IEEE 33rd International Conference on Data Engineering (ICDE); 2017: IEEE.

    Google Scholar 

  34. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A. A review of feature selection methods on synthetic data. Knowl Inf Syst. 2013;34(3):483–519.

    Article  Google Scholar 

  35. Devijver PA, Kittler J. Pattern Recognition Theory and Applications. Springer Science & Business Media; 2012.

    Google Scholar 

  36. Miller A. Subset Selection in Regression. CRC Press; 2002.

    Google Scholar 

  37. Chapelle O, Schölkopf B, Zien A. Introduction to semi-supervised learning. Semi-Supervised Learning. 2017:1–12.

    Google Scholar 

  38. Bair E. Semi-supervised clustering methods. Wiley Interdisciplinary Reviews: Computational Statistics. 2013;5(5):349–61.

    Article  PubMed  Google Scholar 

  39. Kong Y, Gao J, Xu Y, Pan Y, Wang J, Liu J. Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing. 2019;324:63–8.

    Article  Google Scholar 

  40. Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux P, et al. Discrimination and calibration of clinical prediction models: users’ guides to the medical literature. JAMA. 2017;318(14):1377–84.

    Article  PubMed  Google Scholar 

  41. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology (Cambridge, Mass). 2010;21(1):128.

    Google Scholar 

  42. Van Calster B, McLernon DJ, Van Smeden M, Wynants L, Steyerberg EW. Calibration: the Achilles heel of predictive analytics. BMC Med. 2019;17(1):1–7.

    Google Scholar 

  43. Steinbach M, Kumar V, Tan P. Cluster Analysis: Basic concepts and algorithms. Introduction to Data Mining. Pearson Addison Wesley. 2005.

    Google Scholar 

  44. Mäki-Marttunen T, Kaufmann T, Elvsåshagen T, Devor A, Djurovic S, Westlye LT, et al. Biophysical psychiatry—how computational neuroscience can help to understand the complex mechanisms of mental disorders. Front Psych. 2019;10

    Google Scholar 

  45. Montague PR, Dolan RJ, Friston KJ, Dayan P. Computational psychiatry. Trends Cogn Sci. 2012;16(1):72–80.

    Article  PubMed  Google Scholar 

  46. Wu M-J, Mwangi B, Bauer IE, Passos IC, Sanches M, Zunta-Soares GB, et al. Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning. NeuroImage. 2017;145:254–64.

    Article  PubMed  Google Scholar 

  47. Pinto JV, Passos IC, Gomes F, Reckziegel R, Kapczinski F, Mwangi B, et al. Peripheral biomarker signatures of bipolar disorder and schizophrenia: a machine learning approach. Schizophr Res. 2017;188:182.

    Article  PubMed  Google Scholar 

  48. Visweswaran S, Cooper GF. Risk stratification and prognosis using predictive modelling and big data approaches. Personalized and Precision Medicine Informatics: Springer; 2020. p. 87–105.

    Google Scholar 

  49. Strobl EV, Eack SM, Swaminathan V, Visweswaran S. Predicting the risk of psychosis onset: advances and prospects. Early Interv Psychiatry. 2012;6(4):368–79.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hahn T, Nierenberg A, Whitfield-Gabrieli S. Predictive analytics in mental health: applications, guidelines, challenges and perspectives. Mol Psychiatry. 2017;22(1):37.

    Article  CAS  PubMed  Google Scholar 

  51. Fung G, Deng Y, Zhao Q, Li Z, Qu M, Li K, et al. Distinguishing bipolar and major depressive disorders by brain structural morphometry: a pilot study. BMC Psychiatry. 2015;15(1):298.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Voineskos AN. Predicting functional outcomes in early-stage mental illness: prognostic precision medicine realized? JAMA Psychiat. 2018;75(11):1105–6.

    Article  Google Scholar 

  53. Eley TC, Hudson JL, Creswell C, Tropeano M, Lester KJ, Cooper P, et al. Therapygenetics: the 5HTTLPR and response to psychological therapy. Mol Psychiatry. 2012;17(3):236.

    Article  CAS  PubMed  Google Scholar 

  54. Hou L, Heilbronner U, Degenhardt F, Adli M, Akiyama K, Akula N, et al. Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet. 2016;387(10023):1085–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marquand AF, Wolfers T, Mennes M, Buitelaar J, Beckmann CF. Beyond lumping and splitting: a review of computational approaches for stratifying psychiatric disorders. Biological psychiatry: cognitive neuroscience and neuroimaging. 2016;1(5):433–47.

    Google Scholar 

  56. Shatte AB, Hutchinson DM, Teague SJ. Machine learning in mental health: a scoping review of methods and applications. Psychol Med. 2019;49(9):1426–48.

    Article  PubMed  Google Scholar 

  57. Heus P, Damen JA, Pajouheshnia R, Scholten RJ, Reitsma JB, Collins GS, et al. Poor reporting of multivariable prediction model studies: towards a targeted implementation strategy of the TRIPOD statement. BMC Med. 2018;16(1):1–12.

    Article  Google Scholar 

  58. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD). Ann Intern Med. 2015;162(10):735–6.

    Article  PubMed  Google Scholar 

  59. Heus P, Damen JA, Pajouheshnia R, Scholten RJ, Reitsma JB, Collins GS, et al. Uniformity in measuring adherence to reporting guidelines: the example of TRIPOD for assessing completeness of reporting of prediction model studies. BMJ Open. 2019;9(4):e025611.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cohen IG, Amarasingham R, Shah A, Xie B, Lo B. The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Aff. 2014;33(7):1139–47.

    Article  Google Scholar 

  61. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Char DS, Shah NH, Magnus D. Implementing machine learning in health care—addressing ethical challenges. N Engl J Med. 2018;378(11):981.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447–53.

    Article  CAS  PubMed  Google Scholar 

  64. McCradden MD, Joshi S, Mazwi M, Anderson JA. Ethical limitations of algorithmic fairness solutions in health care machine learning. The Lancet Digital Health. 2020;2(5):e221–e3.

    Article  PubMed  Google Scholar 

  65. Allen B. The role of the FDA in ensuring the safety and efficacy of artificial intelligence software and devices. J Am Coll Radiol. 2019;16(2):208–10.

    Article  PubMed  Google Scholar 

  66. FDA. FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems. 2019. Available from: http://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-detect-certain-diabetes-related-eye.

  67. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10.

    Article  PubMed  Google Scholar 

  68. Gerke S, Babic B, Evgeniou T, Cohen IG. The need for a system view to regulate artificial intelligence/machine learning-based software as medical device. NPJ Digital Medicine. 2020;3(1):1–4.

    Article  Google Scholar 

  69. Challen R, Denny J, Pitt M, Gompels L, Edwards T, Tsaneva-Atanasova K. Artificial intelligence, bias and clinical safety. BMJ Qual Saf. 2019;28(3):231–7.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nestor B, McDermott M, Boag W, Berner G, Naumann T, Hughes MC, et al. Feature robustness in non-stationary health records: caveats to deployable model performance in common clinical machine learning tasks. arXiv preprint arXiv:190800690. 2019.

    Google Scholar 

  71. Goddard K, Roudsari A, Wyatt JC. Automation bias: a systematic review of frequency, effect mediators, and mitigators. J Am Med Inform Assoc. 2011;19(1):121–7.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Finlayson SG, Bowers JD, Ito J, Zittrain JL, Beam AL, Kohane IS. Adversarial attacks on medical machine learning. Science. 2019;363(6433):1287–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Suermondt HJ, Cooper GF. An evaluation of explanations of probabilistic inference. Comput Biomed Res. 1993;26(3):242–54.

    Article  CAS  PubMed  Google Scholar 

  74. Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N, editors. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2015: ACM.

    Google Scholar 

  75. Adams RA, Huys QJ, Roiser JP. Computational psychiatry: towards a mathematically informed understanding of mental illness. J Neurol Neurosurg Psychiatry. 2016;87(1):53–63.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Visweswaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Visweswaran, S., Tajgardoon, M. (2021). Data to Information: Computational Models and Analytic Methods. In: Tenenbaum, J.D., Ranallo, P.A. (eds) Mental Health Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-70558-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70558-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70557-2

  • Online ISBN: 978-3-030-70558-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics