Skip to main content

Precision Medicine and a Learning Health System for Mental Health

  • Chapter
  • First Online:
Mental Health Informatics

Part of the book series: Health Informatics ((HI))

  • 906 Accesses

Abstract

More than any other field of healthcare, mental health is in dire need of efficient models for integrating the people, paradigms, and technologies required to acquire and apply new knowledge. In this chapter, we introduce the need for precision mental healthcare. We address the critical role of health information technology (HIT) and the application of informatics technologies on the journey towards precision mental healthcare. We describe the Learning Health System (LHS)—a health system in which data generated during the routine delivery of care is used to generate the evidence upon which new knowledge can be built and fed seamlessly back into the system. We describe how the LHS model aligns with, and integrates, the core informatics cycle of knowledge acquisition within and among basic research, clinical research, and real-world clinical practice. Finally, we introduce the idea of a precision healthcare agenda for mental health—what it is, how it relates to the LHS, and how it is made possible by the science of informatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A few words on terminology: “Biomedical healthcare” is a mouthful, “general medicine” usually refers to general health problems, as opposed to those addressed by a specialist, and “physical medicine” is generally associated with rehabilitation and physiatry. For purposes of this textbook, we use the term “physical healthcare” to refer to care provided in the context of physical health and illness, in contrast with care provided in the mental health context.

References

  1. Redish AD, Gordon JA. Computational psychiatry: new perspectives on mental illness. Strüngmann forum reports. Cambridge, MA: The MIT Press; 2016. xii, 408 pages

    Google Scholar 

  2. Fernandes BS, et al. The new field of ‘precision psychiatry’. BMC Med. 2017;15(1):80.

    PubMed  PubMed Central  Google Scholar 

  3. Insel TR. The NIMH research domain criteria (RDoC) project: precision medicine for psychiatry. Am J Psychiatry. 2014;171(4):395–7.

    PubMed  Google Scholar 

  4. Goldberg D. The heterogeneity of “major depression”. World Psychiatry. 2011;10(3):226–8.

    PubMed  PubMed Central  Google Scholar 

  5. Gillan CM, Fineberg NA, Robbins TW. A trans-diagnostic perspective on obsessive-compulsive disorder. Psychol Med. 2017;47(9):1528–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hyett MP, McEvoy PM. Social anxiety disorder: looking back and moving forward. Psychol Med. 2018;48(12):1937–44.

    PubMed  Google Scholar 

  7. Kelly JR, et al. Dimensional thinking in psychiatry in the era of the research domain criteria (RDoC). Ir J Psychol Med. 2018;35(2):89–94.

    CAS  PubMed  Google Scholar 

  8. Brazil IA, et al. Classification and treatment of antisocial individuals: from behavior to biocognition. Neurosci Biobehav Rev. 2018;91:259–77.

    CAS  PubMed  Google Scholar 

  9. Allsopp K, et al. Heterogeneity in psychiatric diagnostic classification. Psychiatry Res. 2019;279:15–22.

    PubMed  Google Scholar 

  10. BECK AT. Thinking and depression: I. Idiosyncratic content and cognitive distortions. Arch Gen Psychiatry. 1963;9(4):324–33.

    CAS  PubMed  Google Scholar 

  11. Dean J, Keshavan M. The neurobiology of depression: an integrated view. Asian J Psychiatr. 2017;27:101–11.

    PubMed  Google Scholar 

  12. Felger JC, Lotrich FE. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience. 2013;246:199–229.

    CAS  PubMed  Google Scholar 

  13. Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct. 2008;213(1–2):93–118.

    PubMed  PubMed Central  Google Scholar 

  14. Kraus C, et al. Serotonin and neuroplasticity–links between molecular, functional and structural pathophysiology in depression. Neurosci Biobehav Rev. 2017;77:317–26.

    CAS  PubMed  Google Scholar 

  15. Kryst J, Kawalec P, Pilc A. Efficacy and safety of intranasal esketamine for the treatment of major depressive disorder. Expert Opin Pharmacother. 2020;21(1):9–20.

    CAS  PubMed  Google Scholar 

  16. Pitsillou E, et al. The cellular and molecular basis of major depressive disorder: towards a unified model for understanding clinical depression. Mol Biol Rep. 2020;47(1):753–70.

    CAS  PubMed  Google Scholar 

  17. Fornaro M, et al. Brexpiprazole for treatment-resistant major depressive disorder. Expert Opin Pharmacother. 2019;20(16):1925–33.

    CAS  PubMed  Google Scholar 

  18. Chong PS, et al. Therapeutic potential of Hericium erinaceus for depressive disorder. Int J Mol Sci. 2019;21(1):163.

    PubMed Central  Google Scholar 

  19. Pochwat B, Nowak G, Szewczyk B. An update on NMDA antagonists in depression. Expert Rev Neurother. 2019;19(11):1055–67.

    CAS  Google Scholar 

  20. Iseger TA, et al. A frontal-vagal network theory for major depressive disorder: implications for optimizing neuromodulation techniques. Brain Stimul. 2020;13(1):1–9.

    PubMed  Google Scholar 

  21. George MS. Whither TMS: a one-trick pony or the beginning of a neuroscientific revolution? Am J Psychiatry. 2019;176(11):904–10.

    PubMed  PubMed Central  Google Scholar 

  22. Li M, et al. Effects of electroconvulsive therapy on depression and its potential mechanism. Front Psychol. 2020;11:80.

    PubMed  PubMed Central  Google Scholar 

  23. Cawnthorpe D, West M, Wilkes T. Attachment and depression: the relationship between the felt security of attachment and clinical depression among hospitalized female adolescents. Can Child Adolesc Psychiatry Rev. 2004;13(2):31–5.

    Google Scholar 

  24. Klohnen EC, John OP. Working models of attachment: a theory-based prototype approach. In: Attachment theory and close relationships. New York, NY, US: The Guilford Press; 1998. p. 115–40.

    Google Scholar 

  25. Zilcha-Mano S, et al. Identifying the most suitable treatment for depression based on patients’ attachment: study protocol for a randomized controlled trial of supportive-expressive vs. supportive treatments. BMC Psychiatry. 2018;18(1):362.

    PubMed  PubMed Central  Google Scholar 

  26. Gunlicks-Stoessel M, et al. The role of attachment style in interpersonal psychotherapy for depressed adolescents. Psychother Res. 2019;29(1):78–85.

    PubMed  Google Scholar 

  27. Bennett JM, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451–8.

    CAS  PubMed  Google Scholar 

  28. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292–302.

    CAS  Google Scholar 

  29. Arango C, Kapur S, Kahn RS. Going beyond “trial-and-error” in psychiatric treatments: OPTiMiSE-ing the treatment of first episode of schizophrenia. Schizophr Bull. 2015;41(3):546–8.

    PubMed  PubMed Central  Google Scholar 

  30. McMahon FJ. Prediction of treatment outcomes in psychiatry–where do we stand ? Dialogues Clin Neurosci. 2014;16(4):455–64.

    PubMed  PubMed Central  Google Scholar 

  31. Trapp NT, et al. A new device to improve target localization for transcranial magnetic stimulation therapy. Brain Stimul. 2019;12(6):1600–2.

    PubMed  PubMed Central  Google Scholar 

  32. Oliveira-Maia AJ, et al. Comparative efficacy of repetitive transcranial magnetic stimulation for treatment of depression using 2 different stimulation devices: a retrospective open-label study. J Clin Psychiatry. 2016;77(6):743–4.

    Google Scholar 

  33. Souza VH, et al. Development and characterization of the InVesalius navigator software for navigated transcranial magnetic stimulation. J Neurosci Methods. 2018;309:109–20.

    PubMed  Google Scholar 

  34. Institute of Medicine Committee on Crossing the Quality Chasm. Adaptation to Mental, H. and D. Addictive, The national academies collection: reports funded by national institutes of health, in improving the quality of health care for mental and substance-use conditions: quality chasm series. Washington (DC): National Academy of Sciences; 2006. National Academies Press (US) Copyright © 2006.

    Google Scholar 

  35. Kotov R, et al. The hierarchical taxonomy of psychopathology (HiTOP): a dimensional alternative to traditional nosologies. J Abnorm Psychol. 2017;126(4):454–77.

    PubMed  Google Scholar 

  36. Waszczuk MA, et al. Redefining phenotypes to advance psychiatric genetics: implications from hierarchical taxonomy of psychopathology. J Abnorm Psychol. 2020;129(2):143–61.

    PubMed  Google Scholar 

  37. Strickland CM, et al. Categorical and dimensional conceptions of personality pathology in DSM-5: toward a model-based synthesis. J Personal Disord. 2019;33(2):185–213.

    Google Scholar 

  38. Dzau VJ, Ginsburg GS. Realizing the full potential of precision medicine in health and health care. JAMA. 2016;316(16):1659–60.

    PubMed  Google Scholar 

  39. Medicine Io. In: Olsen L, Aisner D, McGinnis JM, editors. The learning healthcare system: workshop summary, vol. 374. Washington, DC: The National Academies Press; 2007.

    Google Scholar 

  40. Medicine, I.o., Roundtable on value & science-driven health care. 2012.

    Google Scholar 

  41. Evidence-Based Medicine Working, G. Evidence-based medicine. A new approach to teaching the practice of medicine. JAMA. 1992;268(17):2420–5.

    Google Scholar 

  42. Sackett DL, et al. Evidence based medicine: what it is and what it isn’t. British Med J. 1996;312:71–2.

    CAS  Google Scholar 

  43. Embi PJ, Payne PR. Evidence generating medicine: redefining the research-practice relationship to complete the evidence cycle. Med Care. 2013;51(8 Suppl 3):S87–91.

    PubMed  Google Scholar 

  44. Piasecki J, Dranseika V. Research versus practice: the dilemmas of research ethics in the era of learning health-care systems. Bioethics. 2019;33(5):617–24.

    PubMed  Google Scholar 

  45. NIH. Notice of intent to publish parent funding opportunity announcements for basic experimental studies with humans. 2018 10/26/18 [cited 2020 5/2/20]; Available from: https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-024.html.

  46. Ommaya A, Korn A, Tunis S. The role of purchasers and payers in the clinical research enterprise: workshop summary. National Academies Press; 2002.

    Google Scholar 

  47. Tunis SR, Stryer DB, Clancy CM. Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy. JAMA. 2003;290(12):1624–32.

    CAS  PubMed  Google Scholar 

  48. Sox HC, Goodman SN. The methods of comparative effectiveness research. Annu Rev Public Health. 2012;33(1):425–45.

    PubMed  Google Scholar 

  49. Health, U.N.I.o. Implementation science news, resources and funding for global health researchers. 2020 [cited 2020 October 5, 2020]; Available from: https://www.fic.nih.gov/ResearchTopics/Pages/ImplementationScience.aspx.

  50. Green LW, et al. Diffusion theory and knowledge dissemination, utilization, and integration in public health. Annu Rev Public Health. 2009;30:151–74.

    PubMed  Google Scholar 

  51. Institute of Medicine Committee on Quality of Health Care in, A in crossing the quality chasm: a new health system for the 21st Century. 2001, National Academies Press (US) Copyright 2001 by the National Academy of Sciences. All rights reserved.: Washington (DC).

    Google Scholar 

  52. Longhurst CA, Harrington RA, Shah NH. A ‘green button’ for using aggregate patient data at the point of care. Health Aff (Millwood). 2014;33(7):1229–35.

    Google Scholar 

  53. Schuler A, et al. Performing an informatics consult: methods and challenges. J Am Coll Radiol. 2018;15(3 Pt B):563–8.

    PubMed  PubMed Central  Google Scholar 

  54. Zerhouni EA. Translational and clinical science–stime for a new vision. N Engl J Med. 2005;353(15):1621–3.

    CAS  PubMed  Google Scholar 

  55. Rubio DM, et al. Defining translational research: implications for training. Acad Med. 2010;85(3):470.

    PubMed  PubMed Central  Google Scholar 

  56. University of Wiscon-Madison, U.I.f.C.a.T.R. What are the T0 to T4 research classifications? 2020 [cited 2020 Ocotber 4, 2020]; Available from: https://ictr.wisc.edu/what-are-the-t0-to-t4-research-classifications/

  57. National Academies of Sciences, E., et al. in Exploring strategies to improve cardiac arrest survival: proceedings of a workshop. 2016, National Academies Press (US) Copyright 2017 by the National Academy of Sciences. All rights reserved.: Washington (DC).

    Google Scholar 

  58. Tenenbaum JD. Translational bioinformatics: past, present, and future. Genomics, Proteomics & Bioinformatics. 2016;14(1):31–41. ISSN 1672-0229. https://doi.org/10.1016/j.gpb.2016.01.003.

    Article  Google Scholar 

  59. Frankovich J, Longhurst CA, Sutherland SM. Evidence-based medicine in the EMR era. N Engl J Med. 2011;365(19):1758–9.

    CAS  PubMed  Google Scholar 

  60. Denny JC, et al. The “all of us” research program. N Engl J Med. 2019;381(7):668–76.

    PubMed  Google Scholar 

  61. Manos D. Rocking the baseline: verily, Duke, and Stanford aim to make medicine more predictive with a new baseline study. New Rochelle, NY: Mary Ann Liebert, Inc.; 2017.

    Google Scholar 

  62. Cross R. ‘Scientific wellness’ study divides researchers. Science. 2017;357(6349):345.

    CAS  PubMed  Google Scholar 

  63. Gaziano JM, et al. Million veteran program: a mega-biobank to study genetic influences on health and disease. J Clin Epidemiol. 2016;70:214–23.

    PubMed  Google Scholar 

  64. Price ND, et al. A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat Biotechnol. 2017;35(8):747.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ledford H. Translational research: the full cycle. Nature. 2008;453(7197):843–5.

    CAS  PubMed  Google Scholar 

  66. Friedman C. Envisioning the learning health system. Lecture conducted as part of the Institute for Health Informatics Invited Speaker Series at the University of Minnesota, United States.

    Google Scholar 

  67. Guise J-M, Savitz LA, Friedman CP. Mind the gap: putting evidence into practice in the era of learning health systems. J Gen Intern Med. 2018;33(12):2237–9.

    PubMed  PubMed Central  Google Scholar 

  68. Carayon P, Wetterneck TB, Alyousef B, et al. Impact of electronic health record technology on the work and workflow of physicians in the intensive care unit. Int J Med Inform. 2015;84(8):578–94. https://doi.org/10.1016/j.ijmedinf.2015.04.002. [published Online First: Epub Date]

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chute C. Lecture conducted as part of the Institute for Health Informatics Invited Speaker Series at the University of Minnesota, United States.

    Google Scholar 

  70. Tenenbaum JD, et al. An informatics research agenda to support precision medicine: seven key areas. J Am Med Inform Assoc. 2016;23:791–5.

    PubMed  PubMed Central  Google Scholar 

  71. Skiba DJ. Informatics and the learning healthcare system. Nurs Educ Perspect. 2011;32(5):334–6.

    PubMed  Google Scholar 

  72. McLachlan S. Innovation in health informatics. J Innov Health Inform. 2018;25(1):11.

    Google Scholar 

  73. Pivovarov R, et al. Identifying and mitigating biases in EHR laboratory tests. J Biomed Inform. 2014;51:24–34.

    PubMed  Google Scholar 

  74. Weiner SJ, et al. How accurate is the medical record? A comparison of the physician’s note with a concealed audio recording in unannounced standardized patient encounters. J Am Med Inform Assoc. 2020;27:770–5.

    PubMed  PubMed Central  Google Scholar 

  75. Botsis T, et al. Secondary use of EHR: data quality issues and informatics opportunities. Summit Transl Bioinform. 2010;2010:1–5.

    PubMed  PubMed Central  Google Scholar 

  76. Hersh WR, et al. Caveats for the use of operational electronic health record data in comparative effectiveness research. Med Care. 2013;51(8 Suppl 3):S30–7.

    PubMed  PubMed Central  Google Scholar 

  77. Baumann LA, Baker J, Elshaug AG. The impact of electronic health record systems on clinical documentation times: A systematic review. Health Policy. 2018;122(8):827–36. https://doi.org/10.1016/j.healthpol.2018.05.014. [published Online First: Epub Date]

    Article  PubMed  Google Scholar 

  78. Joukes E, Abu-Hanna A, Cornet R, de Keizer NF. Time spent on dedicated patient care and documentation tasks before and after the introduction of a structured and standardized electronic health record. Appl Clin Inform. 2018;9(1):46–53. https://doi.org/10.1055/s-0037-1615747. [published Online First: Epub Date]

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kulynych, J. and H. Greely Every patient a subject: when personalized medicine, genomic research, and privacy collide. Slate.com, 2014.

  80. Gonzalez ML, Butler AS, England MJ. Psychosocial interventions for mental and substance use disorders: A framework for establishing evidence-based standards. Washington, DC: National Academies Press; 2015.

    Google Scholar 

  81. Linehan MM, Cochran BN, Kehrer CA. Dialectical behavior therapy for borderline personality disorder. In: Barlow DH, editor. Clinical handbook of psychological disorders: a step-by-step treatment manual, vol. 3. New York: The Guilford Press; 2001. p. 470–522.

    Google Scholar 

  82. Chute CG. Clinical classification and terminology: some history and current observations. J Am Med Inform Assoc. 2000;7(3):298–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ranallo PA, et al. Behavioral health information technology: from chaos to clarity. Health Aff (Millwood). 2016;35(6):1106–13.

    Google Scholar 

  84. Ranallo PA, et al. Psychological assessment instruments: a coverage analysis using SNOMED CT, LOINC and QS terminology. AMIA Annu Symp Proc. 2013;2013:1333–40.

    PubMed  PubMed Central  Google Scholar 

  85. Lambert MJ. Prevention of treatment failure: The use of measuring, monitoring, and feedback in clinical practice. Washington, DC: American Psychological Association; 2010.

    Google Scholar 

  86. Berwick DM, Nolan TW, Whittington J. The triple aim: care, health, and cost. Health Aff (Millwood). 2008;27(3):759–69.

    Google Scholar 

  87. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jameson JL, Longo DL. Precision medicine–personalized, problematic, and promising. N Engl J Med. 2015;372(23):2229–34.

    CAS  PubMed  Google Scholar 

  89. Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med. 2010;363(4):301–4.

    CAS  PubMed  Google Scholar 

  90. Ginsburg GS, McCarthy JJ. Personalized medicine: revolutionizing drug discovery and patient care. Trends Biotechnol. 2001;19(12):491–6.

    CAS  PubMed  Google Scholar 

  91. Pauker SG, Kassirer JP. Decision analysis. N Engl J Med. 1987;316(5):250–8.

    CAS  PubMed  Google Scholar 

  92. Guttmacher AE, Collins FS. Genomic medicine–a primer. N Engl J Med. 2002;347(19):1512–20.

    CAS  PubMed  Google Scholar 

  93. Feero WG, Guttmacher AE, Collins FS. Genomic medicine–an updated primer. N Engl J Med. 2010;362(21):2001–11.

    CAS  PubMed  Google Scholar 

  94. Evans WE, Relling MV. Moving towards individualized medicine with pharmacogenomics. Nature. 2004;429(6990):464–8.

    CAS  PubMed  Google Scholar 

  95. Williams MS. Informatics for a precision learning healthcare system, in personalized and precision medicine informatics, Adam T. and A. C.,. Cham: Springer; 2020.

    Google Scholar 

  96. Trusheim MR, Berndt ER, Douglas FL. Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers. Nat Rev Drug Discov. 2007;6(4):287–93.

    CAS  PubMed  Google Scholar 

  97. Schumann G, et al. Stratified medicine for mental disorders. Eur Neuropsychopharmacol. 2014;24(1):5–50.

    CAS  PubMed  Google Scholar 

  98. Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol. 2011;8(3):184–7.

    PubMed  Google Scholar 

  99. Amare AT, Schubert KO, Baune BT. Pharmacogenomics in the treatment of mood disorders: strategies and opportunities for personalized psychiatry. EPMA J. 2017;8(3):211–27.

    PubMed  PubMed Central  Google Scholar 

  100. Pato MT, et al. The genomic psychiatry cohort: partners in discovery. Am J Med Genet B Neuropsychiatr Genet. 2013;162b(4):306–12.

    PubMed  Google Scholar 

  101. Bickman L, Lyon AR, Wolpert M. Achieving precision mental health through effective assessment, monitoring, and feedback processes: introduction to the special issue. Adm Policy Ment Health. 2016;43(3):271–6.

    PubMed  PubMed Central  Google Scholar 

  102. Joyce DW, et al. Realising stratified psychiatry using multidimensional signatures and trajectories. J Transl Med. 2017;15(1):15.

    PubMed  PubMed Central  Google Scholar 

  103. Zanardi R, et al. Precision psychiatry in clinical practice. Int J Psychiatry Clin Pract. 2020;25:1–9.

    Google Scholar 

  104. Christensen, C.M., J.H. Grossman, and J. Hwang, The innovator’s prescription.. A disruptive Solution for, 2010.

    Google Scholar 

  105. FDA. The FDA warns against the use of many genetic tests with unapproved claims to predict patient response to specific medications. 2019.; Available from: https://www.fda.gov/medical-devices/safety-communications/fda-warns-against-use-many-genetic-tests-unapproved-claims-predict-patient-response-specific.

  106. Bi J, et al. Altered cellular metabolism in gliomas–an emerging landscape of actionable co-dependency targets. Nat Rev Cancer. 2020;20(1):57–70.

    CAS  PubMed  Google Scholar 

  107. Doll S, Gnad F, Mann M. The case for proteomics and Phospho-proteomics in personalized cancer Medicine. Proteomics Clin Appl. 2019;13(2):e1800113.

    PubMed  Google Scholar 

  108. First MB, et al. Clinical applications of neuroimaging in psychiatric disorders. Am J Psychiatry. 2018;175(9):915–6.

    PubMed  PubMed Central  Google Scholar 

  109. Henderson TA, et al. Functional neuroimaging in psychiatry—aiding in diagnosis and guiding treatment. What the American Psychiatric Association does not know. Front Psych. 2020;11(276):0415.

    Google Scholar 

  110. Liu Q, et al. Symptom-based patient stratification in mental illness using clinical notes. J Biomed Inform. 2019;98:103274.

    PubMed  PubMed Central  Google Scholar 

  111. McCoy TH Jr, et al. High throughput phenotyping for dimensional psychopathology in electronic health records. Biol Psychiatry. 2018;83:997–1004.

    PubMed  PubMed Central  Google Scholar 

  112. McCoy TH, et al. A clinical perspective on the relevance of research domain criteria in electronic health records. Am J Psychiatry. 2015;172(4):316–20.

    PubMed  Google Scholar 

  113. Velupillai S, et al. Identifying suicidal adolescents from mental health records using natural language processing. Stud Health Technol Inform. 2019;264:413–7.

    PubMed  Google Scholar 

  114. Zandi PP, et al. Development of the National Network of depression centers mood outcomes program: a multisite platform for measurement-based care. Psychiatr Serv. 2020;71(5):456–64.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piper A. Ranallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranallo, P.A., Tenenbaum, J.D. (2021). Precision Medicine and a Learning Health System for Mental Health. In: Tenenbaum, J.D., Ranallo, P.A. (eds) Mental Health Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-70558-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70558-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70557-2

  • Online ISBN: 978-3-030-70558-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics