Skip to main content

Diagnosis of Collateral Effects in Climate Change Through the Identification of Leaf Damage Using a Novel Heuristics and Machine Learning Framework

  • Chapter
  • First Online:
Metaheuristics in Machine Learning: Theory and Applications

Abstract

Leaf diseases are very common in plants and can cause a remarkable decrease in the crop production, thus affecting the agricultural economy. It is an abnormal change in the characteristics of plant leaves, such as the presence of lesions and discolorations among others, indicating growth related problems which highly impacts the productivity. The cause of leaf damage can be variable, such as bacteria, virus or as a result of nutritional deficiencies. These symptomatic characteristics of the leaf can be used to classify diseases using image processing and machine learning techniques. This research proposes (i) the creation of a database of images of three types of foliar damage, (ii) the use of image processing methods in the extraction of characteristics and (iii) the combination of assembled algorithms with deep learning to classify foliar features of Valencia (Citrus Sinensis) orange tree leaves, which to our knowledge, have not been studied and reported in existing scientific literature. The results of combining these two classification approaches, show optimal rates in binary datasets and highly competitive percentages in multiclass sets. As a result, it can be shown that the combination of these two classification strategies, can be a highly reliable alternative for orange and other citrus plants. In a near future many Smart Cities will be this problem in their gardens and botanical gardens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Chakraborty, X. Lee, A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. Int. J. Appl. Earth Observ. Geoinform. 74, 269–280 (2019)

    Google Scholar 

  2. Y. Loozen, D. Karssenberg, S.M. De Jong, S. Wang, J. van Dijk, M.J. Wassen, K.T. Rebel, Exploring the use of vegetation indices to sense canopy nitrogen to phosphorous ratio in grasses. Int. J. Appl. Earth Observ. Geoinform. 75, 1–14 (2019)

    Google Scholar 

  3. J. Prosek, P. Símová, UAV for mapping shrubland vegetation: does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy? Int. J. Appl. Earth Observ. Geoinform. 75, 151–162 (2019)

    Article  Google Scholar 

  4. C. Vittucci, G.V. Laurin, G. Tramontana, P. Ferrazzoli, L. Guerriero, D. Papale, Vegetation optical depth at L-band and above ground biomass in the tropical range: evaluating their relationships at continental and regional scales. Int. J. Appl. Earth Observ. Geoinform. 77, 151–161 (2019)

    Google Scholar 

  5. G. Wang, J. Wang, X. Zou, G. Chai, M. Wu, Z. Wang, Estimating the fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil from MODIS data: assessing the applicability of the NDVI-DFI model in the typical Xilingol grasslands. Int. J. Appl. Earth Observ. Geoinform. 76, 154–166 (2019)

    Google Scholar 

  6. R. Yao, J. Cao, L. Wang, W. Zhang, X. Wu, Urbanization effects on vegetation cover in major African cities during 2001–2017. Int. J. Appl. Earth Observ. Geoinform. 75, 44–53 (2019)

    Google Scholar 

  7. C. Liu, L. Li, Z. Wang, R. Wang, Pattern transitions in a vegetation system with cross-diffusion. Appl. Math. Comput. 342, 255–262 (2019)

    MathSciNet  MATH  Google Scholar 

  8. T. Semeraro, G. Mastroleo, A. Pomes, A. Luvisi, E. Gissi, R. Aretano, Modelling fuzzy combination of remote sensing vegetation index for durum wheat crop analysis. Comput. Electron. Agric. 156, 684–692 (2019)

    Google Scholar 

  9. L. Zhang, B. Verma, Roadside vegetation segmentation with adaptive Texton clustering model. Eng. Appl. AI 77, 159–176 (2019)

    Article  Google Scholar 

  10. U. Nguyen, E.P. Glenn, T.D. Dang, L.T.H. Pham, Mapping vegetation types in semi-arid riparian regions using random forest and object-based image approach: a case study of the Colorado River Ecosystem, Grand Canyon, Arizona. Ecol. Inform. 50, 43–50 (2019)

    Google Scholar 

  11. M. Bagnara, R.S. Gonzalez, S. Reifenberg, J. Steinkamp, T. Hickler, C. Werner, C.F. Dormann, F. Hartig, An R package facilitating sensitivity analysis, calibration and forward simulations with the LPJ-GUESS dynamic vegetation model. Environ. Model. Softw. 111, 55–60 (2019)

    Google Scholar 

  12. D. Qiao, N. Wang, Relationship between winter snow cover dynamics, climate and spring grassland vegetation phenology in Inner Mongolia, China. ISPRS Int. J. Geo-Inform. 8(1), 42 (2019)

    Article  Google Scholar 

  13. P. Stych, J. Lastovicka, R. Hladky, D. Paluba, Evaluation of the influence of disturbances on forest vegetation using the time series of landsat data: a comparison study of the low Tatras and Sumava national parks. ISPRS Int. J. Geo-Inform. 8(2), 71 (2019)

    Article  Google Scholar 

  14. R. Samuelson, Z. Singer, J. Weinburd, A. Scheel, Advection and autocatalysis as organizing principles for banded vegetation patterns. J. Nonlinear Sci. 29(1), 255–285 (2019)

    Article  MathSciNet  Google Scholar 

  15. W. Li, C. Jiang, Y. Chen, J. Hyyppä, L. Tang, C. Li, S.W. Wang, A liquid crystal tunable filter-based hyperspectral LiDAR system and its application on vegetation red edge detection. IEEE Geosci. Rem. Sens. Lett. 16(2), 291–295 (2019)

    Article  Google Scholar 

  16. L. Geng, T. Che, X. Wang, H. Wang, Detecting spatiotemporal changes in vegetation with the BFAST model in the qilian mountain region during 2000–2017. Rem. Sens. 11(2), 103 (2019)

    Article  Google Scholar 

  17. Z.L. Langford, J. Kumar, F.M. Hoffman, A.L. Breen, C.M. Iversen, Arctic vegetation mapping using unsupervised training datasets and convolutional neural networks. Rem. Sens. 11(1), 69 (2019)

    Article  Google Scholar 

  18. C. Puente, G. Olague, M. Trabucchi, P.D. Arjona-Villicaña, C. Soubervielle-Montalvo, Synthesis of vegetation indices using genetic programming for soil erosion estimation. Rem. Sens. 11(2), 156 (2019)

    Article  Google Scholar 

  19. P. Scarth, J. Armston, R.M. Lucas, P. Bunting, A structural classification of Australian vegetation using ICESat/GLAS, ALOS PALSAR, and landsat sensor data. Rem. Sens. 11(2), 147 (2019)

    Google Scholar 

  20. M. Zhang, H. Lin, G. Wang, H. Sun, Y. Cai, Estimation of vegetation productivity using a landsat 8 time series in a heavily urbanized area, Central China. Rem. Sens. 11(2), 133 (2019)

    Google Scholar 

  21. B. Baniya, Q. Tang, X. Xu, G.G. Haile, G. Chhipi-Shrestha, Spatial and temporal variation of drought based on satellite derived vegetation condition index in Nepal from 1982–2015. Sensors 19(2), 430 (2019)

    Google Scholar 

  22. Y. Tan, J.-Y. Sun, B. Zhang, M. Chen, Y. Liu, X.-D. Liu, Sensitivity of a ratio vegetation index derived from hyperspectral remote sensing to the Brown Planthopper stress on rice plants. Sensors 19(2), 375 (2019)

    Article  Google Scholar 

  23. G.P. Badura, C.M. Bachmann, A.C. Tyler, S. Goldsmith, R.S. Eon, C.S. Lapszynski, A novel approach for deriving LAI of salt marsh vegetation using structure from motion and multiangular spectra. IEEE J Sel. Top. Appl. Earth Observ. Rem. Sens. 12(2), 599–613 (2019)

    Google Scholar 

  24. Y. Du, J. Wang, Z. Liu, H. Yu, Z. Li, H. Cheng, Evaluation on spaceborne multispectral images, airborne hyperspectral, and LiDAR data for extracting spatial distribution and estimating aboveground biomass of wetland vegetation Suaeda salsa. IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 12(1), 200–209 (2019)

    Google Scholar 

  25. K. Jia, L. Yang, S. Liang, Z. Xiao, X. Zhao, Y. Yao, X. Zhang, B. Jiang, D. Liu, Long-term global land surface satellite (GLASS) fractional vegetation cover product derived from MODIS and AVHRR data. IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 12(2), 508–518 (2019)

    Google Scholar 

  26. D.L. Stone, G. Shah, Y. Motai, A.J. Aved, Vegetation segmentation for sensor fusion of omnidirectional far-infrared and visual stream. IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 12(2), 614–626 (2019)

    Google Scholar 

  27. H. Chen, C. Yang, D. Yang, Machine learning-assisted analysis of polarimetric scattering from cylindrical components of vegetation. IEEE Trans. Geosci. Rem. Sens. 57(1), 155–165 (2019)

    Article  Google Scholar 

  28. D. Yang, C. Yang, Q. Liu, Z. Li, Physically based polarimetric volumetric scattering from cylindrically dominated vegetation canopies. IEEE Trans. Geosci. Rem. Sens. 57(3), 1629–1636 (2019)

    Article  Google Scholar 

  29. M. Kurum, M. Deshpande, A.T. Joseph, P.E. O’Neill, R.H. Lang, O. Eroglu, SCoBi-Veg: a generalized Bistatic scattering model of reflectometry from vegetation for signals of opportunity applications. IEEE Trans. Geosci. Rem. Sens. 57(2), 1049–1068 (2019)

    Article  Google Scholar 

  30. M. Adami, S. Bernardes, E. Arai, R.M. de Freitas, Y.E. Shimabukuro, F.D.B. Espirito-Santo, B. Rudorff, L.O. Anderson, Seasonality of vegetation types of South America depicted by moderate resolution imaging spectroradiometer (MODIS) time series. Int. J. Appl. Earth Observ. Geoinform. 69, 148–163 (2018)

    Google Scholar 

  31. J. Komárek, T. Kloucek, J. Prosek, The potential of unmanned aerial systems: a tool towards precision classification of hard-to-distinguish vegetation types? Int. J. Appl. Earth Observ. Geoinform. 71, 9–19 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Council of Science and Technology of Mexico, grant no. 607316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Ochoa-Zezzatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salazar, J., Sánchez-De La Cruz, E., Ochoa-Zezzatti, A., Montes, M., Contreras-Masse, R., Mejia, J. (2021). Diagnosis of Collateral Effects in Climate Change Through the Identification of Leaf Damage Using a Novel Heuristics and Machine Learning Framework. In: Oliva, D., Houssein, E.H., Hinojosa, S. (eds) Metaheuristics in Machine Learning: Theory and Applications. Studies in Computational Intelligence, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-030-70542-8_3

Download citation

Publish with us

Policies and ethics