Skip to main content

Active Thermal Control of Satellites with Electroactive Materials

  • Chapter
  • First Online:
Smart Materials

Abstract

In orbit, satellites are subjected to strong temperature variations depending on the environment they encounter (hot or cold phases of the mission). Thus, one of the challenges in thermal control of artificial satellites is to develop new coatings, with variable emissivity, light, inexpensive, and requiring little or no electricity consumption. In this context, several research groups have developed electroemissive devices based on organic or inorganic materials with tunable infrared (IR) optical properties. This chapter is also devoted to a bibliographical study addressing the concept of emissivity on the one hand and describing the state of the art of electroemissive devices (EED) on the other hand. The most advanced EED fully described in the literature is reported as well as the EED developed by CY Cergy Paris Université and Thales Alenia Space. The latter was evaluated in thermal-vacuum conditions close to the space environment for a proof-of-concept-level testing, and the thermal regulation performances were reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.G. Granqvist, Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mater. Sol. Cells 91, 1529–1598 (2007)

    Article  CAS  Google Scholar 

  2. K. Lewis, A. Pitt, T. Wyatt-Davies, J. Milward, Thin film thermochromic materials for non-linear optical devices. Mater. Res. Soc. 374, 105–116 (1995)

    Article  CAS  Google Scholar 

  3. C. Technology, Thin film design for advanced thermochromic. Chin. Phys. 16, 1704–1709 (2007)

    Article  Google Scholar 

  4. T.D. Swanson, G.C. Birur, NASA thermal control technologies for robotic spacecraft. Appl. Therm. Eng. 23, 1055–1065 (2003)

    Article  Google Scholar 

  5. D.M. Douglas, T. Swanson, R. Osiander, J. Champion, A.G. Darrin, W. Biter, P. Chandrasekhar, Development of the variable emittance thermal suite for the space technology. AIP Conf. Proc 608 (2002)

    Google Scholar 

  6. E.B. Franke, C.L. Trimble, J.S. Hale, M. Schubert, J.A. Woollam, Infrared switching electrochromic devices based on tungsten oxide. J. Appl. Phys. 88, 5777–5784 (2000)

    Article  CAS  Google Scholar 

  7. T. Kogure, K.-C. Leung, The Astrophysics of Emission-Line Stars (Springer, New York, 2007)

    Book  Google Scholar 

  8. B.P. Jelle, Solar radiation glazing factors for window panes, glass structures and electrochromic windows in buildings – Measurement and calculation (2013)

    Google Scholar 

  9. C.G. Granqvist, Solar energy materials. Adv. Mater. 15, 1789–1803 (2003)

    Article  CAS  Google Scholar 

  10. C.G. Granqvist, Oxide electrochromics: Why, how, and whither. Sol. Energy Mater. Sol. Cells 92, 203–208 (2008)

    Article  CAS  Google Scholar 

  11. R.D. Rauh, Electrochromic windows: An overview. Electrochim. Acta 44, 3165–3176 (1999)

    Article  CAS  Google Scholar 

  12. D.R. Rosseinsky, R.J. Mortimer, Electrochromic systems and the prospects for devices. Adv. Mater. 13, 783–793 (2001)

    Article  CAS  Google Scholar 

  13. J.C. Gustafsson-Carlberg, O. Inganäs, M.R. Andersson, C. Booth, A. Azens, C.G. Granqvist, Tuning the bandgap for polymeric smart windows and displays. Electrochim. Acta 40, 2233–2235 (1995)

    Article  CAS  Google Scholar 

  14. R.J. Mortimer, Organic electrochromic materials. Electrochim. Acta 44, 2971–2981 (1999)

    Article  CAS  Google Scholar 

  15. A.-L. Larsson, All-thin-film electrochromic devices for optical and thermal modulation. Acta Univ. Ups., 1–62 (2004)

    Google Scholar 

  16. L. Beluze, Thesis: Matériaux et dispositifs électroactifs dans l’infrarouge, Université Pierre et Marie Curie (2004)

    Google Scholar 

  17. J. Beigbeder, Etudes des propriétés physiques de nanocomposites à matrice polysiloxane: Application au développement d’un revêtement de contrôle thermique froid et antistatique, Université de Toulouse III (2009)

    Google Scholar 

  18. A. Teissier, J.P. Dudon, P.H. Aubert, F. Vidal, S. Remaury, J. Crouzet, C. Chevrot, Feasibility of conducting semi-IPN with variable electro-emissivity: A promising way for spacecraft thermal control. Sol. Energy Mater. Sol. Cells 99, 116–122 (2012)

    Article  CAS  Google Scholar 

  19. D. Liu, H. Cheng, X. Xing, C. Zhang, W. Zheng, Thermochromic properties of W-doped VO2 thin films deposited by aqueous sol-gel method for adaptive infrared stealth application. Infrared Phys. Technol. 77, 339–343 (2016)

    Article  CAS  Google Scholar 

  20. A. Boileau, Elaboration de films minces d’oxydes de nickel et de manganèse et terres rares et caractérisation des propriétés thermo-émissives, Université de Lorraine (2013)

    Google Scholar 

  21. M. Soltani, M. Chaker, X.X. Jiang, D. Nikanpour, J. Margot, Thermochromic La1−xSrxMnO3 (x=0.1, 0.175, and 0.3) smart coatings grown by reactive pulsed laser deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 24, 1518–1523 (2006)

    Article  CAS  Google Scholar 

  22. A. Boileau, F. Capon, S. Barrat, P. Laffez, J.F. Pierson, Thermochromic effect at room temperature of Sm 0.5Ca 0.5MnO 3 thin films. J. Appl. Phys 111, 1–4 (2012)

    Article  CAS  Google Scholar 

  23. D. Fan, Q. Li, Y. Xuan, P. Dai, Variable emissivity property of magnetron sputtering thermochromic film. Thin Solid Films 570, 123–128 (2014)

    Article  CAS  Google Scholar 

  24. A.A. Argun, P.-H. Aubert, B.C. Thompson, I. Schwendeman, C.L. Gaupp, J. Hwang, N.J. Pinto, D.B. Tanner, A.G. MacDiarmid, J.R. Reynolds, Multicolored electrochromism in polymers: Structures and devices. Chem. Mater. 16, 4401–4412 (2004)

    Article  CAS  Google Scholar 

  25. P. Chandrasekhar, Conducting Polymers, Fundamentals and Applications (Kluwer Academic Publishers, Boston, 1999)

    Book  Google Scholar 

  26. C.G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam\New York, 1995)

    Google Scholar 

  27. P. Chandrasekhar, T.J. Dooley, Far IR transparency and dynamic infrared signature control with novel conducting polymer systems. Proc. SPIE 2528, 169–180 (1995)

    Article  CAS  Google Scholar 

  28. P. Chandrasekhar, G.C. Birur, P. Stevens, S. Rawal, E.A. Pierson, K. Miller, Far infrared electrochromism in unique conducting polymer systems. Synth. Met. 119, 293–294 (2001)

    Article  CAS  Google Scholar 

  29. P. Chandrasekhar, B.J. Zay, G.C. Birur, S. Rawal, E.A. Pierson, L. Kauder, T. Swanson, Large, switchable electrochromism in the visible through far-infrared in conducting polymer devices. Adv. Funct. Mater. 12, 95–103 (2002)

    Article  CAS  Google Scholar 

  30. P. Chandrasekhar, B.J. Zay, T. McQueeney, A. Scara, D.R. Rosseinsky, G.C. Birur, S. Haapanen, L. Kauder, T. Swanson, D. Douglas, Conducting polymer (CP) infrared electrochromics in spacecraft thermal control and military applications. Synth. Met. 135–136, 23–24 (2003)

    Article  CAS  Google Scholar 

  31. P. Chandrasekhar, B.J. Zay, T. McQueeney, G.C. Birur, V. Sitaram, R. Menon, M. Coviello, R.L. Elsenbaumer, Physical, chemical, theoretical aspects of conducting polymer electrochromics in the visible, IR and microwave regions. Synth. Met. 155, 623–627 (2005)

    Article  CAS  Google Scholar 

  32. P. Chandrasekhar, B.J. Zay, S. Barbolt, R. Werner, G.C. Birur, A. Paris, High performance variable emittance devices for spacecraft application based on conducting polymers coupled with ionic liquids. AIP Conf. Proc. 1103, 101–104 (2009)

    Article  CAS  Google Scholar 

  33. P. Chandrasekhar, B.J. Zay, D. Lawrence, E. Caldwell, R. Sheth, R. Stephan, J. Cornwell, Variable-emittance infrared electrochromic skins combining unique conducting polymers, ionic liquid electrolytes, microporous polymer membranes, and semiconductor/polymer coatings, for spacecraft thermal control. J. Appl. Polym. Sci. 40850, 1–15 (2014)

    Google Scholar 

  34. Y. Tian, X. Zhang, S. Dou, L. Zhang, H. Zhang, H. Lv, L. Wang, J. Zhao, Y. Li, A comprehensive study of electrochromic device with variable infrared emissivity based on polyaniline conducting polymer. Sol. Energy Mater. Sol. Cells 170, 120–126 (2017)

    Article  CAS  Google Scholar 

  35. H. Li, K. Xie, Y. Pan, M. Yao, C. Xin, Variable emissivity infrared electrochromic device based on polyaniline conducting polymer. Synth. Met. 159, 1386–1388 (2009)

    Article  CAS  Google Scholar 

  36. H. Pagès, P. Topart, D. Lemordant, Wide band electrochromic displays based on thin conducting polymer films. Electrochim. Acta 46, 2137–2143 (2001)

    Article  Google Scholar 

  37. P.-H. Aubert, A.A. Argun, A. Cirpan, D.B. Tanner, J.R. Reynolds, Microporous patterned electrodes for color-matched electrochromic polymer displays. Chem. Mater. 16, 2386–2393 (2004)

    Article  CAS  Google Scholar 

  38. A.A. Argun, A. Cirpan, P.-H. Aubert, J.R. Reynolds, Multi-color electrochromic polymers on reflective devices. Polym. Mater. Sci. Eng. 90, 40 (2004)

    CAS  Google Scholar 

  39. A.A. Argun, Patterning of Conjugated Polymers for Electrochromic Devices (University of Florida, Gainesville, 2004)

    Google Scholar 

  40. I. Schwendeman, J. Hwang, D.M. Welsh, D.B. Tanner, J.R. Reynolds, Combined visible and infrared electrochromism using dual polymer devices. Adv. Mater. 13, 634–637 (2001)

    Article  CAS  Google Scholar 

  41. J.S. Hale, J.A. Woollam, Prospects for IR emissivity control using electrochromic structures. Thin Solid Films 339, 174–180 (1999)

    Article  CAS  Google Scholar 

  42. E.B. Franke, C.L. Trimble, J.S. Hale, M. Schubert, J.A. Woollam, All-solid-state electrochromic reflectance device for emittance modulation in the far-infrared spectral region. Appl. Phys. Lett. 77, 930–932 (2000)

    Article  CAS  Google Scholar 

  43. N. Kislov, H. Gorger, R. Ponnappan, All-solid state electrochromic variable emittance coatings for thermal management in space. AIP Conf. Proc 654 (2003)

    Google Scholar 

  44. H. Demiryont, K. Shannon III, R. Ponnappan, Electrochromic devices for satellite thermal control. AIP Conf. Proc 813 (2006)

    Google Scholar 

  45. H. Demiryont, D. Moorehead, Electrochromic emissivity modulator for spacecraft thermal management. Sol. Energy Mater. Sol. Cells 93, 2075–2078 (2009)

    Article  CAS  Google Scholar 

  46. K. Sauvet, A. Rougier, L. Sauques, Electrochromic WO3 thin films active in the IR region. Sol. Energy Mater. Sol. Cells 92, 209–215 (2008)

    Article  CAS  Google Scholar 

  47. K. Sauvet, L. Sauques, A. Rougier, IR electrochromic WO3 thin films: From optimization to devices. Sol. Energy Mater. Sol. Cells 93, 2045–2049 (2009)

    Article  CAS  Google Scholar 

  48. K. Sauvet, L. Sauques, A. Rougier, Electrochromic properties of WO3 as a single layer and in a full device: From the visible to the infrared. J. Phys. Chem. Solids 71, 696–699 (2010)

    Article  CAS  Google Scholar 

  49. M. Macek, B. Orel, Electrochromism of sol-gel derived niobium oxide. Sol. Energy Mater. Sol. Cells 22, 67–72 (1998)

    CAS  Google Scholar 

  50. H. Demiryont, K. Shannon III, A. Williams, Emissivity modulating electro-chromic device. Proc. SPIE 6939 (2008)

    Google Scholar 

  51. H. Demiryont, K. Shannon III, J. Sheets, Emissivity modulating electrochromic device. Proc. SPIE 7331 (2009)

    Google Scholar 

  52. H. Demiryont, Emissivity-modulating electrochromic device for satellite thermal control. SPIE-Newsroom (2015)

    Google Scholar 

  53. P. Topart, P. Hourquebie, Infrared switching electroemissive devices based on highly conducting polymers. Thin Solid Films 352, 243–248 (1999)

    Article  CAS  Google Scholar 

  54. Y. Chang, K. Lee, R. Kiebooms, A. Aleshin, A.J. Heeger, Reflectance of conducting poly(3,4-ethylenedioxythiophene). Synth. Met. 105, 203–206 (1999)

    Article  CAS  Google Scholar 

  55. C. Louet, S. Cantin, J.P. Dudon, P.-H. Aubert, F. Vidal, C. Chevrot, A comprehensive study of infrared reflectivity of poly(3,4-ethylenedioxythiophene) model layers with different morphologies and conductivities. Sol. Energy Mater. Sol. Cells 143, 141–151 (2015)

    Article  CAS  Google Scholar 

  56. K. Lee, A.J. Heeger, Optical reflectance studies of conducting polymers on the metal-insulator boundary. Synth. Met. 84, 715–718 (1997)

    Article  CAS  Google Scholar 

  57. S. Wu, C. Jia, X. Fu, X. Weng, J. Zhang, L. Deng, A novel electrochromic and broad infrared emissivity modulation film based on the copolymer of aniline and o-anisidine. Electrochim. Acta 88, 322–329 (2013)

    Article  CAS  Google Scholar 

  58. X. Weng, S. Wu, Y. Liu, Z. Wan, C. Jia, J. Xie, Novel electrochromic and infrared emissivity modulation films based on poly (carbazoyltriphenylamine) and poly(carbazoyltriphenylamine-thiophene). Org. Electron. 51, 190–199 (2017)

    Article  CAS  Google Scholar 

  59. P. Verge, P.-H. Aubert, F. Vidal, L. Sauques, F. Tran-Van, S. Peralta, D. Teyssié, C. Chevrot, New prospects in the conception of IR electro-tunable devices: The use of conducting semi-interpenetrating polymer network architecture. Chem. Mater. 22, 4539–4547 (2010)

    Article  CAS  Google Scholar 

  60. P. Verge, PhD, Réseaux Interpénétrés de Polymères électroactifs à signature infrarouge modulable, Université de Cergy-Pontoise (2008)

    Google Scholar 

  61. P. Verge, L. Beouch, P.-H. Aubert, F. Vidal, F. Tran-Van, D. Teyssié, C. Chevrot, Symmetrical electrochromic and electroemissive devices from semi-interpenetrating polymer networks. Adv. Sci. Technol. StafaZuerich Switz. 55, 18–23 (2008)

    Article  CAS  Google Scholar 

  62. F. Vidal, C. Plesse, P.-H. Aubert, L. Beouch, F. Tran-Van, G. Palaprat, P. Verge, P. Yammine, J. Citerin, A. Kheddar, L. Sauques, C. Chevrot, D. Teyssié, Poly(3,4-ethylenedioxythiophene)-containing semi-interpenetrating polymer networks: A versatile concept for the design of optical or mechanical electroactive devices. Polym. Int. 59, 313–320 (2010)

    Article  CAS  Google Scholar 

  63. L. Goujon, Elaboration d’un dispositif électroémissif flexible à base de réseaux interpénétrés de polymères, Université de Cergy-Pontoise (2011)

    Google Scholar 

  64. L. Goujon, A. Khaldi, A. Maziz, C. Plesse, G.T.M. Nguyen, P.-H. Aubert, F. Vidal, C. Chevrot, D. Teyssié, Flexible solid polymer electrolytes based on nitrile butadiene rubber/poly(ethylene oxide) interpenetrating polymer networks containing either LiTFSI or EMITFSI. Macromolecules 44, 9683–9691 (2011)

    Article  CAS  Google Scholar 

  65. C. Chevrot, D. Teyssié, P. Verge, L. Goujon, F. Tran-Van, F. Vidal, P.-H. Aubert, S. Peralta, L. Sauques, Electroactive semi-interpenetrating polymer networks architecture with tunable IR reflectivity. Proc. SPIE 7976 (2011)

    Google Scholar 

  66. C. Louët, Compréhension des propriétés électro-réflectrices dans l’infrarouge de poly(3,4-éthylènedioxythiophène) électropolymérisé: Des couches modèles aux premiers dispositifs, Université de Cergy-Pontoise (2015)

    Google Scholar 

  67. R. Brooke, E. Mitraka, S. Sardar, M. Sandberg, A. Sawatdee, M. Berggren, X. Crispin, M.P. Jonsson, Infrared electrochromic conducting polymer devices. J. Mater. Chem. C 5, 5824–5830 (2017)

    Article  CAS  Google Scholar 

  68. S.F. Cogan, R.D. Raugh, J.D. Klein, T.D. Plante, Electrochromic materials II. Electrochem. Soc. Proc (1995)

    Google Scholar 

  69. M.G. Hutchins, N.S. Butt, A.J. Topping, J. Gallego, P. Milne, D. Jeffrey, I. Brotherston, Infrared reflectance modulation in tungsten oxide based electrochromic devices. Electrochim. Acta 46, 1983–1988 (2001)

    Article  CAS  Google Scholar 

  70. L. Beluze, M. Morcrette, B. Viana, J.-C. Badot, N. Baffier, J.M. Tarascon, Infrared electroactive materials and devices. J. Phys. Chem. Solids 67, 1330–1333 (2006)

    Article  CAS  Google Scholar 

  71. A.-L. Larsson, G. Niklasson, L. Stenmark, Thin film coatings with variable emittance. Proc. SPIE 3738, 486–492 (1999)

    Article  CAS  Google Scholar 

  72. A. Bessière, C. Marcel, M. Morcrette, J.-M. Tarascon, V. Lucas, B. Viana, N. Baffier, Flexible electrochromic reflectance device based on tungsten oxide for infrared emissivity control. J. Appl. Phys. 91, 1589–1594 (2002)

    Article  CAS  Google Scholar 

  73. A. Bessière, L. Beluze, M. Morcrette, V. Lucas, B. Viana, J.C. Badot, Control of powder microstructure for improved infrared reflectance modulation of an electrochromic plastic device. Chem. Mater. 15, 2577–2583 (2003)

    Article  CAS  Google Scholar 

  74. C. Marcel, J. Tarascon, An all-plastic WO3.H2O/polyaniline electrochromic device. Solid State Ionics 143, 89–101 (2001)

    Article  CAS  Google Scholar 

  75. J.M. Tarascon, A.S. Gozdz, C. Schmutz, F. Shokoohi, P.C. Warren, Performance of Bellcore’s plastic rechargeable Li-ion batteries. Solid State Ionics 86–88, 49–54 (1996)

    Article  Google Scholar 

  76. M. Galinski, A. Lewandowski, I. Stepniak, Ionic liquids as electrolytes. Electrochim. Acta 51, 5567–5580 (2006)

    Article  CAS  Google Scholar 

  77. M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009)

    Article  CAS  Google Scholar 

  78. A.D. Jenkins, P. Kratochvil, R.F.T. Stepto, U.W. Suter, International union of pure glossary of basic terms in polymer. Pure Appl. Chem. 68, 2287–2311 (1996)

    Article  CAS  Google Scholar 

  79. P. Verge, F. Vidal, P.-H. Aubert, L. Beouch, F. Tran-Van, F. Goubard, D. Teyssié, C. Chevrot, Thermal ageing of poly(ethylene oxide)/poly(3,4-ethylenedioxythiophene) semi-IPNs. Eur. Polym. J. 44, 3864–3870 (2008)

    Article  CAS  Google Scholar 

  80. I. Fabre-Francke, P.-H. Aubert, S. Alfonsi, F. Vidal, L. Sauques, C. Chevrot, Electropolymerization of 3,4-ethylenedioxythiophene within an insulating nitrile butadiene rubber network: Application to electroreflective surfaces and devices. Sol. Energy Mater. Sol. Cells 99, 109–115 (2012)

    Article  CAS  Google Scholar 

  81. N. Festin, A. Maziz, C. Plesse, D. Teyssié, C. Chevrot, F. Vidal, Robust solid polymer electrolyte for conducting IPN actuators. Smart Mater. Struct. 22(10), 104005 (2013)

    Article  CAS  Google Scholar 

  82. G. Petroffe, L. Beouch, S. Cantin, C. Chevrot, P.-H. Aubert, J.-P. Dudon, F. Vidal, Thermal regulation of satellites using adaptive polymeric materials. Sol. Energy Mater. Sol. Cells 200, 110035 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Vidal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vidal, F. et al. (2022). Active Thermal Control of Satellites with Electroactive Materials. In: Rasmussen, L. (eds) Smart Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-70514-5_7

Download citation

Publish with us

Policies and ethics