Q. Pei, M. Rosenthal, R. Pelrine, S. Stanford, R. Kornbluh, Multifunctional electroelastomer roll actuators and their application for biomimetic walking robots. Proc. SPIE 5051, 11 (2003). https://doi.org/10.1117/12.484392
CrossRef
Google Scholar
P. Brochu, Q. Pei, Dielectric elastomers for actuators and artificial muscles, in Electroactivity in Polymeric Materials, Chapter 1, ed. by L. Rasmussen, (Springer-Verlag, GmbH & Co. KG, © 2012), p. 40
Google Scholar
M. Shahinpoor, Biomimetic robotic Venus flytrap made with ionic polymer metal composites. Bioinspir. Biomim. 6(4), 046004 (2011). https://doi.org/10.1088/1748-3182/6/4/046004
CAS
CrossRef
Google Scholar
E.F. Hebling, R.J. Wood, A review of propulsion, power, and control architectures for insect-scale flapping-wing vehicles. ASME App. Mech. Revs. 70, 010801–010801 (2018)
CrossRef
Google Scholar
R.J. Wood, 2007, Liftoff of a 60 mg Flapping-Wing MAV, Proc 2007 IEEE/RSJ IROS, 1889–1894. (2007). https://doi.org/10.1109/IROS.2007.4399502
J.S. Hyeon, J.W. Park, R.H. Baughman, S.J. Kim, Electrochemical graphene/carbon nanotube yarn artificial muscles. Sens. Acts B: Chem. 286, 237–242 (2019). https://doi.org/10.1016/j.snb.2019.01.140
CAS
CrossRef
Google Scholar
A. Miriyev, K. Stack, H. Lipson, Soft material for soft actuators. Nat. Commun. 8, 596 (2017). https://doi.org/10.1038/s41467-017-00685-3
CAS
CrossRef
Google Scholar
K.Y. Ma, P. Chirarattananon, S.B. Fuller, R.J. Wood, Controlled flight of a biologically inspired, insect-scale robot. Science 240(6132), 603–607 (2013). https://doi.org/10.1126/science.1231806
CAS
CrossRef
Google Scholar
D.A. Wells, The Science of Common Things (Palala Press, © 2015), p. 290
Google Scholar
L. Rasmussen (ed.), Electroactivity in Polymeric Materials (Springer-Verlag, GmbH & Co. KG, © 2012)
Google Scholar
L. Rasmussen, L.D. Meixler, D. Schramm, D. Pearlman, K. Mullally, P. Rasmussen, A. Kirk, Considerations for contractile electroactive polymer based materials and actuators. Proc. SPIE 7976, 2B1–2B13 (2011)
Google Scholar
L. Rasmussen, C.J. Erickson, L.D. Meixler, G. Ascione, C.A. Gentile, C. Tilson, E. Abelev, Considerations for contractile electroactive polymeric materials and actuators. Polym. Int. 59, 290–299 (2010)
CAS
CrossRef
Google Scholar
L. Rasmussen, Electrically driven mechanochemical artificial muscle: For smooth 3-dimensional movement in robotics and prosthetics. Proc. SPIE 6524, 20 (2007)
Google Scholar
L. Rasmussen, L.N. Albers, S. Rodriguez, C.A. Gentile, L.D. Meixler, G. Ascione, R. Hitchner, J. Taylor, D. Hoffman, D. Cylinder, L. Moy, P.S. Mark, D.L. Prillaman, R. Nodarse, M.J. Menegus, J.A. Ratto, C.T. Thellen, D. Froio, L. Valenza, C. Poirier, C. Sinkler, D. Corl, S. Hablani, T. Fuerst, S. Gallucci, W. Blocher, S. Liffland, Ras Labs-CASIS-ISS NL experiment for synthetic muscle returned to Earth: Resistance to ionizing radiation. Proc. SPIE 10163, 1016310 (2017). https://doi.org/10.1117/12.2267716
L. Rasmussen, E. Sandberg, L.N. Albers, S. Rodriguez, C.A. Gentile, L.D. Meixler, G. Ascione, R. Hitchner, J. Taylor, D. Hoffman, D. Cylinder, L. Moy, P.S. Mark, D.L. Prillaman, R. Nodarse, M.J. Menegus, J.A. Ratto, C.T. Thellen, D. Froio, C. Furlong, P. Razavi, L. Valenza, S. Hablani, T. Fuerst, S. Gallucci, W. Blocher, S. Liffland, Ras Labs-CASIS-ISS NL experiment for synthetic muscle: Resistance to ionizing radiation. Proc. SPIE 9798, OP1–O10 (2016). https://doi.org/10.1117/12.2219473
L. Rasmussen, C.J. Erickson, L.D. Meixler, The development of electrically driven mechanochemical actuators that act as artificial muscle. Proc. SPIE 7287, E1–E13 (2009)
Google Scholar
L. Rasmussen, S. Rodriguez, M. Bowers, G. Franzini, C.A. Gentile, L.D. Meixler, G. Ascione, R. Hitchner, J. Taylor, D. Hoffman, D. Cylinder, L. Moy, P.S. Mark, D.L. Prillaman, R. Nodarse, M.J. Menegus, R. Carpenter, D. Martin, M. Maltese, C. Furlong, P. Razavi, G. Martino, Synthetic muscle electroactive polymer (EAP) based actuation and sensing for prosthetic and robotic applications. Proc. SPIE 10594, 105942C (2018). https://doi.org/10.1117/12.2297660
R.J. Wood, The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Robot. 24(2), 341–347 (2008). https://doi.org/10.1109/TRO.2008.916997
CrossRef
Google Scholar
F. Madsen, A.E. Daugaard, S. Hvilsted, A.L. Skov, Review: The current state of silicone-based dielectric elastomer transducers. Macromol. Rap. Comms. 37(5), 378–413 (2016). https://doi.org/10.1002/marc.201500576
CAS
CrossRef
Google Scholar
R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454), 836–839 (2000). https://doi.org/10.1126/science.287.5454.836
CAS
CrossRef
Google Scholar
F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen, Dielectric elastomers as electro-mechanical transducers: Fundamentals, materials, devices, models & applications of an emerging electroactive polymer technology (Elsevier, © 2008)
Google Scholar
R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%, in Electroactivity in Polymeric Materials, Appendix B, ed. by L. Rasmussen, (Springer-Verlag, GmbH & Co. KG, © 2012), pp. 151–159
Google Scholar
C. Bonomo, L. Fortuna, P. Giannone, S. Graziani, S. Strazzeri, Motion Sensors and Actuators Based on Ionic Polymer-Metal Composites, in Device Applications of Nonlinear Dynamics. Understanding Complex Systems, ed. by S. Baglio, A. Bulsara, (Springer, Berlin/Heidelberg, © 2006), pp. 83–99. doi.org/10.1007/3-540-33878-0_7
M. Shahinpoor, Y. Bar-Cohen, J.O. Simpson, J. Smith, Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles: A review. Smart Mater. Structs. 7(6), R15 (1998). https://doi.org/10.1088/0964-1726/7/6/001
CAS
CrossRef
Google Scholar
Pneumatic Artificial Muscles (© 2020), https://en.wikipedia.org/wiki/Pneumatic_artificial_muscles
G. Wang, N. Wereley, T. Pillsbury, Non-linear quasi-static model of pneumatic artificial muscle actuators. J. Int. Mater. Systms. Structs. 26(5), 541–553 (2015). https://doi.org/10.1177/1045389X14533430
CrossRef
Google Scholar
V.L. Nickel, J. Perry, A.L. Garrett, Development of useful function in the severely paralyzed hand. J. Bone Joint Surg. 45A(5), 933–952 (1963)
CrossRef
Google Scholar
Scientific Instruments, Biorobotics: Build Your Own Robotic Air Muscle Actuator [DIY McKibben AM] (© 2020), https://www.imagesco.com/articles/airmuscle/AirMuscleDescription01.html
mGrip and other grippers (© 2020), https://www.softroboticsinc.com/
Y. Osada, Conversion of chemical onto mechanical energy by synthetic polymers (chemomechanical systems), in Advances in Polymer Science, ed. by S. Olivé, G. Henrici-Olivé, vol. 82, (Springer, © 1987), pp. 1–46. doi.org/10.1007/BFb0024041
Y. Osada, D.E. De Rossi, Polymer Sensors and Actuators (Springer, © 2010)
Google Scholar
Y. Osada, A. Khokhlov, Polymer Gels and Networks (Marcel Dekker, © 2002)
Google Scholar
Y. Osada, Polymer Sensors and Actuators (Springer, © 2000)
Google Scholar
Y. Osada, K. Kajiwara, Gels Handbook (Academic Press/Elsevier, © 2000)
Google Scholar
T. Narita, N. Hirota, J.P. Gong, Y. Osada, Effects of counterions and co-ions on the surfactant binding process in the charged polymer network. J. Phys. Chem. 103, 6262–6266 (1999). https://doi.org/10.1021/jp990358l
CAS
CrossRef
Google Scholar
M. Uchida, M. Kurosawa, Y. Osada, Swelling process and order-disorder transition of hydrogel containing hydrophobic ionizable groups. Macromolecules 28, 4583–4586 (1995). doi:0024.9297/95/2228-4583
CAS
CrossRef
Google Scholar
Y. Osada, S.B. Ross-Murphy, Intelligent gels. Sci. Amer. 268(5), 82–87 (1993). https://doi.org/10.1038/scientificamerican0593-82
CAS
CrossRef
Google Scholar
H. Okuzaki, Y. Osada, Electro-driven chemomechanical behaviors of polymer gel based on reversible complex formation with surfactant molecules, and polymer gels: Intelligent soft materials as new energy transducers, in Proceeding of the First Conference on Intelligent Materials, ICIM 92, ed. by T. Takagi, K. Takahashi, M. Aizawa, S. Miyata, (Kanagawa, © 1992)
Google Scholar
Y. Osada, H. Okuzaki, H. Hori, A polymer gel with electrically driven motility. Nature 355, 242–243 (1992). https://doi.org/10.1038/355242a0
CAS
CrossRef
Google Scholar
D. De Rossi, K. Kaliwara, Y. Osada, A. Yamauchi, Polymer Gels (Plenum Press, New York, © 1991)
Google Scholar
M. Miyano, Y. Osada, Electroconductive organogel 2. Appearance and nature of current oscillation under electric field. Macromolecules 24, 4755–4761 (1991). doi:0024.9297/91/2224.4755
CAS
CrossRef
Google Scholar
Y. Osada, Chemical valves and gel actuators. Adv. Mater. 3(2), 107–108 (1991). doi:0935-9648/91/0202-0107
CAS
CrossRef
Google Scholar
J. Gong, I. Kawakami, Y. Osada, Electroconductive organogel. 4. Electrodriven chemomechanical behaviors of charge-transfer complex gel in organic solvent. Macromolecules 24, 6582–6587 (1991). doi:0024.0207/91/2224.6582
CAS
CrossRef
Google Scholar
R. Kishi, Y. Osada, Reversible volume change of microparticles in an electric field. J. Chem. Soc. Faraday Trans. 1 85(3), 655–662 (1989). https://doi.org/10.1039/F19898500655
CAS
CrossRef
Google Scholar
Y. Osada, K. Umezawa, A. Yamauchi, Oscillation of electrical current in waterswollen polyelectrolyte gels. Makromol. Chem. 189, 597–605 (1988). doi:0025-116X/88
CAS
CrossRef
Google Scholar
Y. Osada, M. Hasebe, Electrically activated mechanochemical devices using polyelectrolyte gels. Chem. Lett. 14(9), 1285–1288 (1985)
CrossRef
Google Scholar
Y. Osada, M. Sato, Conversion of chemical into mechanical energy by contractile polymers performed by polymer complexation. Polymer 21, 1057–1061 (1980). doi:0032-3861/80/091057-05
CAS
CrossRef
Google Scholar
T. Shiga, Y. Hirose, A. Okada, T. Kurauchi, Bending of a high strength gel in an electric field. Polym. Preprt. 30(1), 310–314 (1998)
Google Scholar
T. Shiga, Deformation and viscoelastic behavior of polymer gels in electric fields. Adv. Polym. Sci. 134, 131–162 (1997)
CAS
CrossRef
Google Scholar
T. Tanaka, I. Nishio, S.T. Sun, Collapse of gels in an electric field. Science 218, 467–469 (1980). doi:0036-8075/82/1029-0467
CrossRef
Google Scholar
T. Tanaka, A.Y. Grosberg, Molecular dynamics of multi-chain coulomb polymers and the effect of salt ions. AIP Conf. Proc. 469, 599–606 (1999). https://doi.org/10.1063/1.58554
CAS
CrossRef
Google Scholar
A.E. English, T. Tanaka, E.R. Edelman, Polymer and solution ion shielding in polyampholytic hydrogels. Polymer 39(24), 5893–5897 (1998). https://doi.org/10.1016/S0032-3861(98)00106-2
CAS
CrossRef
Google Scholar
E.S. Matsuo, T. Tanaka, Kinetics of discontinuous volume-phase transition of gels. J. Chem. Phys. 89(3), 1695–1703 (1988). https://doi.org/10.1016/S0021-9606/88/151695-09
CAS
CrossRef
Google Scholar
S. Hirotsu, Y. Hirowaka, T. Tananka, Volume-phase transitions of ionized n-isopropylacrylamide gels. J. Chem. Phys. 87(2), 1392–1395 (1987). doi:0021-9606/87/141392-04
CAS
CrossRef
Google Scholar
T. Tanaka, Gels, in Structure and Dynamics of Biopolymers, NATO ASI Series E, ed. by C. Nicolini, (Martinus Nijhoff Publishers, Boston, © 1987)
Google Scholar
T. Tanaka, E. Sato, Y. Hirokawa, S. Hirotsu, J. Peetermans, Critical kinetics of volume phase transitions of gels. Phys. Rev. Lett. 55(22), 2455–2458 (1985). https://doi.org/10.1103/PhysRevLett.55.2455
CAS
CrossRef
Google Scholar
T. Tanaka, Critical dynamics, kinetics and phase transitions of polymer gels. Polym. Preprt. 27(1), 235 (1985)
Google Scholar
T. Tanaka, Gels. Sci. Amer. 244(1), 124–138 (1981). https://doi.org/10.1038/scientificamerican0181-124
CAS
CrossRef
Google Scholar
T. Tanaka, D. Fillmore, S.T. Sun, I. Nishio, G. Swislow, A. Shah, Phase transition in ionic gels. Phys. Rev. Lett. 45(20), 1636–1639 (1980). https://doi.org/10.1103/PhysRevLett.45.1636
CAS
CrossRef
Google Scholar
V.V. Vasilevskaya, I.I. Potemkin, A.R. Khokhlov, Swelling and collapse of physical gels formed by associating telechelic polyelectrolytes. Langmuir 15, 7918–7924 (1999). https://doi.org/10.1021/la981057q
CAS
CrossRef
Google Scholar
R.A. Haslam, M. Boocock, P. Lemon, S. Thorpe, Safety Sci. 40, 625–637 (© 2002)
Google Scholar
L. Rasmussen, P.N. Vicars, C. Briggs, T. Cheng, E.A. Clancy, S. Carey, B. Secino, Synthetic muscle electroactive polymer shape-morphing and pressure sensing for robotic grippers. Proc. SPIE 11375, 1137505 (2020). https://doi.org/10.1117/12.2558965
CrossRef
Google Scholar
NASA Space Radiation Analysis Group, Johnson Space Center (© 2019), https://srag.jsc.nasa.gov/SpaceRadiation/What/What.cfm
National Institute of Standards and Technology, Radionuclide Half-Life Measurements (© 2010), http://www.nist.gov/pml/data/halflife-html.cfm
R.L. Fleischer, P.B. Price, R.M. Walker, Nuclear Tracks in Solids: Principles and Applications, Chapter 2. (University of California Press, © 1975), p. 54
Google Scholar
P.B. Price, L.R. Fleischer, Identification of energetic heavy nuclei with solid dielectric track detectors: Applications to astrophysical and planetary studies. Annu. Rev. Nucl. Sci. 21(310) (1971). doi/abs/10.1146/annurev.ns.21.120171.001455
G.M. Comstock, R.L. Fleischer, W.L. Giard, H.R. Hart, G.E. Nichols, P.B. Price, Cosmic-ray tracks in plastics: The Apollo helmet dosimetry experiment. Science 172, 154–156 (1971)
CAS
CrossRef
Google Scholar
R.L. Fleischer, Tracks to Innovation (Springer, © 1998), p. 121
Google Scholar
S. Kelly, Endurance: My Year in Space, a Lifetime of Discovery (Knopf Penguin Random House, © 2017)
Google Scholar
US Geological Survey, US Department of the Interior (© 2020), www.usgs.gov/special-topic/water-science-school/science/water-you-water-and-human-body?qt-science_center_objects=0#qt-science_center_objects
L. Rasmussen, L.D. Meixler, C.A. Gentile, Contractile electroactive materials and actuators. Proc. SPIE 8340(10), 1–14 (2012)
Google Scholar
M. Chaplin, Peroxide and Oxygen Radicals, in Water Structure and Science, Creative Commons. (2020). www1.lsbu.ac.uk/water/o2water.html
K. Tomanova, M. Precek, V. Mucka, V. Vysin, L. Jiha, V. Cuba, At the crossroad of photochemistry and radiation chemistry: Formation of hydroxyl radicals in diluted aqueous solutions exposed to ultraviolet radiation. Phys. Chem. Chem. Phys. 19, 29402–29408 (2017). https://doi.org/10.1039/C7CP05125E
CAS
CrossRef
Google Scholar
Mechno-arm (© 2020), https://starwars.fandom.com/wiki/Mechno-arm
B. Patel, Synthetic Skin Sensitive to the Lightest Touch (© 2010), https://spectrum.ieee.org/biomedical/bionics/synthetic-skin-sensitive-to-the-lightest-touch
Y. Jiang, U. Mansfield, K. Kratz, A. Lendlein, Programmable microscale stiffness pattern of flat polymeric substrates by temperature-memory technology. MRS Commun. 9(01), 181–188 (2019)
CAS
CrossRef
Google Scholar
W.G. Bircher, A.M. Dollar, A. Morgan, OpenHand (© 2020), https://www.eng.yale.edu/grablab/openhand/
L. Rasmussen, S. Rodriguez, M. Bowers, D. Smith, G. Martino, L. Rizzo, C. Scheiber, J. d’Almeida, C. Dillis, Adjustable liners and sockets for prosthetic devices. Can Prosth. & Ortho J. 1(2), 1–3 (2018)
Google Scholar
L. Rasmussen, S. Rodriguez, M. Bowers, D. Smith, G. Martino, L. Moy, P.D. Mark, D. Prillaman, R. Nodarse, R. Carpenter, D. Martin, C. Scheiber, J. d’Almeida, Synthetic muscle electroactive polymer based actuation and pressure sensing for prosthetic and robotic gripper applications. Proc. SPIE 10966, 1096626 (2019). https://doi.org/10.1117/12.2514429
CrossRef
Google Scholar
Discussions with prosthetic experts: Mt Sterling, OH, 2016-present; Duderstadt, Germany, 2017; with Dr. Matthew Maltese, Children’s Hospital of Philadelphia, Philadelphia, PA, 2015-present; and with Dr. Todd Farrell, LTI, Holliston, MA 2015-present
Google Scholar
W. Burngardner, Very Well Fit (© 2018), www.verywellfit.com/whats-typical-for-average-daily-steps-3435736
Industrial Safety & Hygiene News, Statistics on Hand and Arm Loss, BNP Media (© 2018), http://www.ishn.com/articles/97844-statistics-on-hand-and-arm-loss
Access Prosthetics, Living with Limb Loss (© 2017), https://accessprosthetics.com/15-limb-loss-statistics-may-surprise/
D.S. Smith, Partial-Hand Amputations. inMotion, 17(1). (© 2007), https://www.amputee-coalition.org/wp-content/uploads/2015/05/partial_hand.pdf
G. Roddenberry, Star Trek: Original Series and Star Trek: The Next Generation, 1966–1969 and 1987–1994
Google Scholar