Abstract
For deep space travel, new materials are being explored to assist humans in dangerous environments, such as high radiation, extreme temperature, and extreme pressure. Synthetic Muscle™ is a class of electroactive polymer (EAP)-based materials and actuators that shape-morph at low voltage (1.5 V to 50 V), sense pressure (gentle touch to high impact), and attenuate force. These EAPs can survive and work in environments where humans cannot safely enter due to extreme environments or due to contagions that have no cure. From the Ras Labs-CASIS-ISS Experiment, the flown Synthetic Muscle™ samples compared well to the ground control samples, even after over a year on the International Space Station. Replicating human grasp has implications in robotics and prosthetics. EAP linkages can be actuated and EAP pressure sensors placed at the fingertip regions of robotic grippers for tactile feedback. With autonomy, artificial intelligence, machine learning, and EAP and other smart material technologies all coming together, there is an incredible fusion of mechanical and biological concepts to make truly innovative biomimetic motion. Smart materials will allow humanity to advance and survive on Earth and in space: on the ISS National Laboratory, the planned Moon base, the anticipated Mars settlements, and beyond.

Keywords
- Electroactive polymer
- EAP
- Smart material
- Intelligent material
- Sensor
- Gripper
- End effector
- Robot
- Collaborative robot
- Humanoid
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Q. Pei, M. Rosenthal, R. Pelrine, S. Stanford, R. Kornbluh, Multifunctional electroelastomer roll actuators and their application for biomimetic walking robots. Proc. SPIE 5051, 11 (2003). https://doi.org/10.1117/12.484392
P. Brochu, Q. Pei, Dielectric elastomers for actuators and artificial muscles, in Electroactivity in Polymeric Materials, Chapter 1, ed. by L. Rasmussen, (Springer-Verlag, GmbH & Co. KG, © 2012), p. 40
M. Shahinpoor, Biomimetic robotic Venus flytrap made with ionic polymer metal composites. Bioinspir. Biomim. 6(4), 046004 (2011). https://doi.org/10.1088/1748-3182/6/4/046004
E.F. Hebling, R.J. Wood, A review of propulsion, power, and control architectures for insect-scale flapping-wing vehicles. ASME App. Mech. Revs. 70, 010801–010801 (2018)
R.J. Wood, 2007, Liftoff of a 60 mg Flapping-Wing MAV, Proc 2007 IEEE/RSJ IROS, 1889–1894. (2007). https://doi.org/10.1109/IROS.2007.4399502
J.S. Hyeon, J.W. Park, R.H. Baughman, S.J. Kim, Electrochemical graphene/carbon nanotube yarn artificial muscles. Sens. Acts B: Chem. 286, 237–242 (2019). https://doi.org/10.1016/j.snb.2019.01.140
A. Miriyev, K. Stack, H. Lipson, Soft material for soft actuators. Nat. Commun. 8, 596 (2017). https://doi.org/10.1038/s41467-017-00685-3
K.Y. Ma, P. Chirarattananon, S.B. Fuller, R.J. Wood, Controlled flight of a biologically inspired, insect-scale robot. Science 240(6132), 603–607 (2013). https://doi.org/10.1126/science.1231806
D.A. Wells, The Science of Common Things (Palala Press, © 2015), p. 290
L. Rasmussen (ed.), Electroactivity in Polymeric Materials (Springer-Verlag, GmbH & Co. KG, © 2012)
L. Rasmussen, L.D. Meixler, D. Schramm, D. Pearlman, K. Mullally, P. Rasmussen, A. Kirk, Considerations for contractile electroactive polymer based materials and actuators. Proc. SPIE 7976, 2B1–2B13 (2011)
L. Rasmussen, C.J. Erickson, L.D. Meixler, G. Ascione, C.A. Gentile, C. Tilson, E. Abelev, Considerations for contractile electroactive polymeric materials and actuators. Polym. Int. 59, 290–299 (2010)
L. Rasmussen, Electrically driven mechanochemical artificial muscle: For smooth 3-dimensional movement in robotics and prosthetics. Proc. SPIE 6524, 20 (2007)
L. Rasmussen, L.N. Albers, S. Rodriguez, C.A. Gentile, L.D. Meixler, G. Ascione, R. Hitchner, J. Taylor, D. Hoffman, D. Cylinder, L. Moy, P.S. Mark, D.L. Prillaman, R. Nodarse, M.J. Menegus, J.A. Ratto, C.T. Thellen, D. Froio, L. Valenza, C. Poirier, C. Sinkler, D. Corl, S. Hablani, T. Fuerst, S. Gallucci, W. Blocher, S. Liffland, Ras Labs-CASIS-ISS NL experiment for synthetic muscle returned to Earth: Resistance to ionizing radiation. Proc. SPIE 10163, 1016310 (2017). https://doi.org/10.1117/12.2267716
L. Rasmussen, E. Sandberg, L.N. Albers, S. Rodriguez, C.A. Gentile, L.D. Meixler, G. Ascione, R. Hitchner, J. Taylor, D. Hoffman, D. Cylinder, L. Moy, P.S. Mark, D.L. Prillaman, R. Nodarse, M.J. Menegus, J.A. Ratto, C.T. Thellen, D. Froio, C. Furlong, P. Razavi, L. Valenza, S. Hablani, T. Fuerst, S. Gallucci, W. Blocher, S. Liffland, Ras Labs-CASIS-ISS NL experiment for synthetic muscle: Resistance to ionizing radiation. Proc. SPIE 9798, OP1–O10 (2016). https://doi.org/10.1117/12.2219473
L. Rasmussen, C.J. Erickson, L.D. Meixler, The development of electrically driven mechanochemical actuators that act as artificial muscle. Proc. SPIE 7287, E1–E13 (2009)
L. Rasmussen, S. Rodriguez, M. Bowers, G. Franzini, C.A. Gentile, L.D. Meixler, G. Ascione, R. Hitchner, J. Taylor, D. Hoffman, D. Cylinder, L. Moy, P.S. Mark, D.L. Prillaman, R. Nodarse, M.J. Menegus, R. Carpenter, D. Martin, M. Maltese, C. Furlong, P. Razavi, G. Martino, Synthetic muscle electroactive polymer (EAP) based actuation and sensing for prosthetic and robotic applications. Proc. SPIE 10594, 105942C (2018). https://doi.org/10.1117/12.2297660
R.J. Wood, The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Robot. 24(2), 341–347 (2008). https://doi.org/10.1109/TRO.2008.916997
F. Madsen, A.E. Daugaard, S. Hvilsted, A.L. Skov, Review: The current state of silicone-based dielectric elastomer transducers. Macromol. Rap. Comms. 37(5), 378–413 (2016). https://doi.org/10.1002/marc.201500576
R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454), 836–839 (2000). https://doi.org/10.1126/science.287.5454.836
F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen, Dielectric elastomers as electro-mechanical transducers: Fundamentals, materials, devices, models & applications of an emerging electroactive polymer technology (Elsevier, © 2008)
R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%, in Electroactivity in Polymeric Materials, Appendix B, ed. by L. Rasmussen, (Springer-Verlag, GmbH & Co. KG, © 2012), pp. 151–159
C. Bonomo, L. Fortuna, P. Giannone, S. Graziani, S. Strazzeri, Motion Sensors and Actuators Based on Ionic Polymer-Metal Composites, in Device Applications of Nonlinear Dynamics. Understanding Complex Systems, ed. by S. Baglio, A. Bulsara, (Springer, Berlin/Heidelberg, © 2006), pp. 83–99. doi.org/10.1007/3-540-33878-0_7
M. Shahinpoor, Y. Bar-Cohen, J.O. Simpson, J. Smith, Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles: A review. Smart Mater. Structs. 7(6), R15 (1998). https://doi.org/10.1088/0964-1726/7/6/001
Pneumatic Artificial Muscles (© 2020), https://en.wikipedia.org/wiki/Pneumatic_artificial_muscles
G. Wang, N. Wereley, T. Pillsbury, Non-linear quasi-static model of pneumatic artificial muscle actuators. J. Int. Mater. Systms. Structs. 26(5), 541–553 (2015). https://doi.org/10.1177/1045389X14533430
V.L. Nickel, J. Perry, A.L. Garrett, Development of useful function in the severely paralyzed hand. J. Bone Joint Surg. 45A(5), 933–952 (1963)
Scientific Instruments, Biorobotics: Build Your Own Robotic Air Muscle Actuator [DIY McKibben AM] (© 2020), https://www.imagesco.com/articles/airmuscle/AirMuscleDescription01.html
mGrip and other grippers (© 2020), https://www.softroboticsinc.com/
Y. Osada, Conversion of chemical onto mechanical energy by synthetic polymers (chemomechanical systems), in Advances in Polymer Science, ed. by S. Olivé, G. Henrici-Olivé, vol. 82, (Springer, © 1987), pp. 1–46. doi.org/10.1007/BFb0024041
Y. Osada, D.E. De Rossi, Polymer Sensors and Actuators (Springer, © 2010)
Y. Osada, A. Khokhlov, Polymer Gels and Networks (Marcel Dekker, © 2002)
Y. Osada, Polymer Sensors and Actuators (Springer, © 2000)
Y. Osada, K. Kajiwara, Gels Handbook (Academic Press/Elsevier, © 2000)
T. Narita, N. Hirota, J.P. Gong, Y. Osada, Effects of counterions and co-ions on the surfactant binding process in the charged polymer network. J. Phys. Chem. 103, 6262–6266 (1999). https://doi.org/10.1021/jp990358l
M. Uchida, M. Kurosawa, Y. Osada, Swelling process and order-disorder transition of hydrogel containing hydrophobic ionizable groups. Macromolecules 28, 4583–4586 (1995). doi:0024.9297/95/2228-4583
Y. Osada, S.B. Ross-Murphy, Intelligent gels. Sci. Amer. 268(5), 82–87 (1993). https://doi.org/10.1038/scientificamerican0593-82
H. Okuzaki, Y. Osada, Electro-driven chemomechanical behaviors of polymer gel based on reversible complex formation with surfactant molecules, and polymer gels: Intelligent soft materials as new energy transducers, in Proceeding of the First Conference on Intelligent Materials, ICIM 92, ed. by T. Takagi, K. Takahashi, M. Aizawa, S. Miyata, (Kanagawa, © 1992)
Y. Osada, H. Okuzaki, H. Hori, A polymer gel with electrically driven motility. Nature 355, 242–243 (1992). https://doi.org/10.1038/355242a0
D. De Rossi, K. Kaliwara, Y. Osada, A. Yamauchi, Polymer Gels (Plenum Press, New York, © 1991)
M. Miyano, Y. Osada, Electroconductive organogel 2. Appearance and nature of current oscillation under electric field. Macromolecules 24, 4755–4761 (1991). doi:0024.9297/91/2224.4755
Y. Osada, Chemical valves and gel actuators. Adv. Mater. 3(2), 107–108 (1991). doi:0935-9648/91/0202-0107
J. Gong, I. Kawakami, Y. Osada, Electroconductive organogel. 4. Electrodriven chemomechanical behaviors of charge-transfer complex gel in organic solvent. Macromolecules 24, 6582–6587 (1991). doi:0024.0207/91/2224.6582
R. Kishi, Y. Osada, Reversible volume change of microparticles in an electric field. J. Chem. Soc. Faraday Trans. 1 85(3), 655–662 (1989). https://doi.org/10.1039/F19898500655
Y. Osada, K. Umezawa, A. Yamauchi, Oscillation of electrical current in waterswollen polyelectrolyte gels. Makromol. Chem. 189, 597–605 (1988). doi:0025-116X/88
Y. Osada, M. Hasebe, Electrically activated mechanochemical devices using polyelectrolyte gels. Chem. Lett. 14(9), 1285–1288 (1985)
Y. Osada, M. Sato, Conversion of chemical into mechanical energy by contractile polymers performed by polymer complexation. Polymer 21, 1057–1061 (1980). doi:0032-3861/80/091057-05
T. Shiga, Y. Hirose, A. Okada, T. Kurauchi, Bending of a high strength gel in an electric field. Polym. Preprt. 30(1), 310–314 (1998)
T. Shiga, Deformation and viscoelastic behavior of polymer gels in electric fields. Adv. Polym. Sci. 134, 131–162 (1997)
T. Tanaka, I. Nishio, S.T. Sun, Collapse of gels in an electric field. Science 218, 467–469 (1980). doi:0036-8075/82/1029-0467
T. Tanaka, A.Y. Grosberg, Molecular dynamics of multi-chain coulomb polymers and the effect of salt ions. AIP Conf. Proc. 469, 599–606 (1999). https://doi.org/10.1063/1.58554
A.E. English, T. Tanaka, E.R. Edelman, Polymer and solution ion shielding in polyampholytic hydrogels. Polymer 39(24), 5893–5897 (1998). https://doi.org/10.1016/S0032-3861(98)00106-2
E.S. Matsuo, T. Tanaka, Kinetics of discontinuous volume-phase transition of gels. J. Chem. Phys. 89(3), 1695–1703 (1988). https://doi.org/10.1016/S0021-9606/88/151695-09
S. Hirotsu, Y. Hirowaka, T. Tananka, Volume-phase transitions of ionized n-isopropylacrylamide gels. J. Chem. Phys. 87(2), 1392–1395 (1987). doi:0021-9606/87/141392-04
T. Tanaka, Gels, in Structure and Dynamics of Biopolymers, NATO ASI Series E, ed. by C. Nicolini, (Martinus Nijhoff Publishers, Boston, © 1987)
T. Tanaka, E. Sato, Y. Hirokawa, S. Hirotsu, J. Peetermans, Critical kinetics of volume phase transitions of gels. Phys. Rev. Lett. 55(22), 2455–2458 (1985). https://doi.org/10.1103/PhysRevLett.55.2455
T. Tanaka, Critical dynamics, kinetics and phase transitions of polymer gels. Polym. Preprt. 27(1), 235 (1985)
T. Tanaka, Gels. Sci. Amer. 244(1), 124–138 (1981). https://doi.org/10.1038/scientificamerican0181-124
T. Tanaka, D. Fillmore, S.T. Sun, I. Nishio, G. Swislow, A. Shah, Phase transition in ionic gels. Phys. Rev. Lett. 45(20), 1636–1639 (1980). https://doi.org/10.1103/PhysRevLett.45.1636
V.V. Vasilevskaya, I.I. Potemkin, A.R. Khokhlov, Swelling and collapse of physical gels formed by associating telechelic polyelectrolytes. Langmuir 15, 7918–7924 (1999). https://doi.org/10.1021/la981057q
R.A. Haslam, M. Boocock, P. Lemon, S. Thorpe, Safety Sci. 40, 625–637 (© 2002)
L. Rasmussen, P.N. Vicars, C. Briggs, T. Cheng, E.A. Clancy, S. Carey, B. Secino, Synthetic muscle electroactive polymer shape-morphing and pressure sensing for robotic grippers. Proc. SPIE 11375, 1137505 (2020). https://doi.org/10.1117/12.2558965
NASA Space Radiation Analysis Group, Johnson Space Center (© 2019), https://srag.jsc.nasa.gov/SpaceRadiation/What/What.cfm
National Institute of Standards and Technology, Radionuclide Half-Life Measurements (© 2010), http://www.nist.gov/pml/data/halflife-html.cfm
R.L. Fleischer, P.B. Price, R.M. Walker, Nuclear Tracks in Solids: Principles and Applications, Chapter 2. (University of California Press, © 1975), p. 54
P.B. Price, L.R. Fleischer, Identification of energetic heavy nuclei with solid dielectric track detectors: Applications to astrophysical and planetary studies. Annu. Rev. Nucl. Sci. 21(310) (1971). doi/abs/10.1146/annurev.ns.21.120171.001455
G.M. Comstock, R.L. Fleischer, W.L. Giard, H.R. Hart, G.E. Nichols, P.B. Price, Cosmic-ray tracks in plastics: The Apollo helmet dosimetry experiment. Science 172, 154–156 (1971)
R.L. Fleischer, Tracks to Innovation (Springer, © 1998), p. 121
S. Kelly, Endurance: My Year in Space, a Lifetime of Discovery (Knopf Penguin Random House, © 2017)
US Geological Survey, US Department of the Interior (© 2020), www.usgs.gov/special-topic/water-science-school/science/water-you-water-and-human-body?qt-science_center_objects=0#qt-science_center_objects
L. Rasmussen, L.D. Meixler, C.A. Gentile, Contractile electroactive materials and actuators. Proc. SPIE 8340(10), 1–14 (2012)
M. Chaplin, Peroxide and Oxygen Radicals, in Water Structure and Science, Creative Commons. (2020). www1.lsbu.ac.uk/water/o2water.html
K. Tomanova, M. Precek, V. Mucka, V. Vysin, L. Jiha, V. Cuba, At the crossroad of photochemistry and radiation chemistry: Formation of hydroxyl radicals in diluted aqueous solutions exposed to ultraviolet radiation. Phys. Chem. Chem. Phys. 19, 29402–29408 (2017). https://doi.org/10.1039/C7CP05125E
Mechno-arm (© 2020), https://starwars.fandom.com/wiki/Mechno-arm
B. Patel, Synthetic Skin Sensitive to the Lightest Touch (© 2010), https://spectrum.ieee.org/biomedical/bionics/synthetic-skin-sensitive-to-the-lightest-touch
Y. Jiang, U. Mansfield, K. Kratz, A. Lendlein, Programmable microscale stiffness pattern of flat polymeric substrates by temperature-memory technology. MRS Commun. 9(01), 181–188 (2019)
W.G. Bircher, A.M. Dollar, A. Morgan, OpenHand (© 2020), https://www.eng.yale.edu/grablab/openhand/
L. Rasmussen, S. Rodriguez, M. Bowers, D. Smith, G. Martino, L. Rizzo, C. Scheiber, J. d’Almeida, C. Dillis, Adjustable liners and sockets for prosthetic devices. Can Prosth. & Ortho J. 1(2), 1–3 (2018)
L. Rasmussen, S. Rodriguez, M. Bowers, D. Smith, G. Martino, L. Moy, P.D. Mark, D. Prillaman, R. Nodarse, R. Carpenter, D. Martin, C. Scheiber, J. d’Almeida, Synthetic muscle electroactive polymer based actuation and pressure sensing for prosthetic and robotic gripper applications. Proc. SPIE 10966, 1096626 (2019). https://doi.org/10.1117/12.2514429
Discussions with prosthetic experts: Mt Sterling, OH, 2016-present; Duderstadt, Germany, 2017; with Dr. Matthew Maltese, Children’s Hospital of Philadelphia, Philadelphia, PA, 2015-present; and with Dr. Todd Farrell, LTI, Holliston, MA 2015-present
W. Burngardner, Very Well Fit (© 2018), www.verywellfit.com/whats-typical-for-average-daily-steps-3435736
Industrial Safety & Hygiene News, Statistics on Hand and Arm Loss, BNP Media (© 2018), http://www.ishn.com/articles/97844-statistics-on-hand-and-arm-loss
Access Prosthetics, Living with Limb Loss (© 2017), https://accessprosthetics.com/15-limb-loss-statistics-may-surprise/
D.S. Smith, Partial-Hand Amputations. inMotion, 17(1). (© 2007), https://www.amputee-coalition.org/wp-content/uploads/2015/05/partial_hand.pdf
G. Roddenberry, Star Trek: Original Series and Star Trek: The Next Generation, 1966–1969 and 1987–1994
Acknowledgments
We gratefully acknowledge the National Science Foundation, the Center for the Advancement of Science in Space, the Kalenian Award, Breakout Labs, Children’s Hospital of Philadelphia/Philadelphia Pediatric Medical Device Consortium, the US DOE, and the US DOD for funding of the synthetic muscle projects. We gratefully acknowledge Livia Rizzo of the Harvard Medical School MedScience Program and interns Curran Dillis, Cole Schreiber, and Jesse d’Almeida for their work with the customized 3D printed prosthetic hand. STEM internships were supported in part through the MLSC Internship Challenge and the PPPL NUF and SULI Programs.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Rasmussen, L. et al. (2022). Synthetic Muscle™ for Deep Space Travel and Other Applications on Earth and in Space. In: Rasmussen, L. (eds) Smart Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-70514-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-70514-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-70512-1
Online ISBN: 978-3-030-70514-5
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)