Skip to main content

Synthetic Muscle™ for Deep Space Travel and Other Applications on Earth and in Space

  • Chapter
  • First Online:
Smart Materials

Abstract

For deep space travel, new materials are being explored to assist humans in dangerous environments, such as high radiation, extreme temperature, and extreme pressure. Synthetic Muscle™ is a class of electroactive polymer (EAP)-based materials and actuators that shape-morph at low voltage (1.5 V to 50 V), sense pressure (gentle touch to high impact), and attenuate force. These EAPs can survive and work in environments where humans cannot safely enter due to extreme environments or due to contagions that have no cure. From the Ras Labs-CASIS-ISS Experiment, the flown Synthetic Muscle™ samples compared well to the ground control samples, even after over a year on the International Space Station. Replicating human grasp has implications in robotics and prosthetics. EAP linkages can be actuated and EAP pressure sensors placed at the fingertip regions of robotic grippers for tactile feedback. With autonomy, artificial intelligence, machine learning, and EAP and other smart material technologies all coming together, there is an incredible fusion of mechanical and biological concepts to make truly innovative biomimetic motion. Smart materials will allow humanity to advance and survive on Earth and in space: on the ISS National Laboratory, the planned Moon base, the anticipated Mars settlements, and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Q. Pei, M. Rosenthal, R. Pelrine, S. Stanford, R. Kornbluh, Multifunctional electroelastomer roll actuators and their application for biomimetic walking robots. Proc. SPIE 5051, 11 (2003). https://doi.org/10.1117/12.484392

    Article  Google Scholar 

  2. P. Brochu, Q. Pei, Dielectric elastomers for actuators and artificial muscles, in Electroactivity in Polymeric Materials, Chapter 1, ed. by L. Rasmussen, (Springer-Verlag, GmbH & Co. KG, © 2012), p. 40

    Google Scholar 

  3. M. Shahinpoor, Biomimetic robotic Venus flytrap made with ionic polymer metal composites. Bioinspir. Biomim. 6(4), 046004 (2011). https://doi.org/10.1088/1748-3182/6/4/046004

    Article  CAS  Google Scholar 

  4. E.F. Hebling, R.J. Wood, A review of propulsion, power, and control architectures for insect-scale flapping-wing vehicles. ASME App. Mech. Revs. 70, 010801–010801 (2018)

    Article  Google Scholar 

  5. R.J. Wood, 2007, Liftoff of a 60 mg Flapping-Wing MAV, Proc 2007 IEEE/RSJ IROS, 1889–1894. (2007). https://doi.org/10.1109/IROS.2007.4399502

  6. J.S. Hyeon, J.W. Park, R.H. Baughman, S.J. Kim, Electrochemical graphene/carbon nanotube yarn artificial muscles. Sens. Acts B: Chem. 286, 237–242 (2019). https://doi.org/10.1016/j.snb.2019.01.140

    Article  CAS  Google Scholar 

  7. A. Miriyev, K. Stack, H. Lipson, Soft material for soft actuators. Nat. Commun. 8, 596 (2017). https://doi.org/10.1038/s41467-017-00685-3

    Article  CAS  Google Scholar 

  8. K.Y. Ma, P. Chirarattananon, S.B. Fuller, R.J. Wood, Controlled flight of a biologically inspired, insect-scale robot. Science 240(6132), 603–607 (2013). https://doi.org/10.1126/science.1231806

    Article  CAS  Google Scholar 

  9. D.A. Wells, The Science of Common Things (Palala Press, © 2015), p. 290

    Google Scholar 

  10. L. Rasmussen (ed.), Electroactivity in Polymeric Materials (Springer-Verlag, GmbH & Co. KG, © 2012)

    Google Scholar 

  11. L. Rasmussen, L.D. Meixler, D. Schramm, D. Pearlman, K. Mullally, P. Rasmussen, A. Kirk, Considerations for contractile electroactive polymer based materials and actuators. Proc. SPIE 7976, 2B1–2B13 (2011)

    Google Scholar 

  12. L. Rasmussen, C.J. Erickson, L.D. Meixler, G. Ascione, C.A. Gentile, C. Tilson, E. Abelev, Considerations for contractile electroactive polymeric materials and actuators. Polym. Int. 59, 290–299 (2010)

    Article  CAS  Google Scholar 

  13. L. Rasmussen, Electrically driven mechanochemical artificial muscle: For smooth 3-dimensional movement in robotics and prosthetics. Proc. SPIE 6524, 20 (2007)

    Google Scholar 

  14. L. Rasmussen, L.N. Albers, S. Rodriguez, C.A. Gentile, L.D. Meixler, G. Ascione, R. Hitchner, J. Taylor, D. Hoffman, D. Cylinder, L. Moy, P.S. Mark, D.L. Prillaman, R. Nodarse, M.J. Menegus, J.A. Ratto, C.T. Thellen, D. Froio, L. Valenza, C. Poirier, C. Sinkler, D. Corl, S. Hablani, T. Fuerst, S. Gallucci, W. Blocher, S. Liffland, Ras Labs-CASIS-ISS NL experiment for synthetic muscle returned to Earth: Resistance to ionizing radiation. Proc. SPIE 10163, 1016310 (2017). https://doi.org/10.1117/12.2267716

  15. L. Rasmussen, E. Sandberg, L.N. Albers, S. Rodriguez, C.A. Gentile, L.D. Meixler, G. Ascione, R. Hitchner, J. Taylor, D. Hoffman, D. Cylinder, L. Moy, P.S. Mark, D.L. Prillaman, R. Nodarse, M.J. Menegus, J.A. Ratto, C.T. Thellen, D. Froio, C. Furlong, P. Razavi, L. Valenza, S. Hablani, T. Fuerst, S. Gallucci, W. Blocher, S. Liffland, Ras Labs-CASIS-ISS NL experiment for synthetic muscle: Resistance to ionizing radiation. Proc. SPIE 9798, OP1–O10 (2016). https://doi.org/10.1117/12.2219473

  16. L. Rasmussen, C.J. Erickson, L.D. Meixler, The development of electrically driven mechanochemical actuators that act as artificial muscle. Proc. SPIE 7287, E1–E13 (2009)

    Google Scholar 

  17. L. Rasmussen, S. Rodriguez, M. Bowers, G. Franzini, C.A. Gentile, L.D. Meixler, G. Ascione, R. Hitchner, J. Taylor, D. Hoffman, D. Cylinder, L. Moy, P.S. Mark, D.L. Prillaman, R. Nodarse, M.J. Menegus, R. Carpenter, D. Martin, M. Maltese, C. Furlong, P. Razavi, G. Martino, Synthetic muscle electroactive polymer (EAP) based actuation and sensing for prosthetic and robotic applications. Proc. SPIE 10594, 105942C (2018). https://doi.org/10.1117/12.2297660

  18. R.J. Wood, The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Robot. 24(2), 341–347 (2008). https://doi.org/10.1109/TRO.2008.916997

    Article  Google Scholar 

  19. F. Madsen, A.E. Daugaard, S. Hvilsted, A.L. Skov, Review: The current state of silicone-based dielectric elastomer transducers. Macromol. Rap. Comms. 37(5), 378–413 (2016). https://doi.org/10.1002/marc.201500576

    Article  CAS  Google Scholar 

  20. R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454), 836–839 (2000). https://doi.org/10.1126/science.287.5454.836

    Article  CAS  Google Scholar 

  21. F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen, Dielectric elastomers as electro-mechanical transducers: Fundamentals, materials, devices, models & applications of an emerging electroactive polymer technology (Elsevier, © 2008)

    Google Scholar 

  22. R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%, in Electroactivity in Polymeric Materials, Appendix B, ed. by L. Rasmussen, (Springer-Verlag, GmbH & Co. KG, © 2012), pp. 151–159

    Google Scholar 

  23. C. Bonomo, L. Fortuna, P. Giannone, S. Graziani, S. Strazzeri, Motion Sensors and Actuators Based on Ionic Polymer-Metal Composites, in Device Applications of Nonlinear Dynamics. Understanding Complex Systems, ed. by S. Baglio, A. Bulsara, (Springer, Berlin/Heidelberg, © 2006), pp. 83–99. doi.org/10.1007/3-540-33878-0_7

  24. M. Shahinpoor, Y. Bar-Cohen, J.O. Simpson, J. Smith, Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles: A review. Smart Mater. Structs. 7(6), R15 (1998). https://doi.org/10.1088/0964-1726/7/6/001

    Article  CAS  Google Scholar 

  25. Pneumatic Artificial Muscles (© 2020), https://en.wikipedia.org/wiki/Pneumatic_artificial_muscles

  26. G. Wang, N. Wereley, T. Pillsbury, Non-linear quasi-static model of pneumatic artificial muscle actuators. J. Int. Mater. Systms. Structs. 26(5), 541–553 (2015). https://doi.org/10.1177/1045389X14533430

    Article  Google Scholar 

  27. V.L. Nickel, J. Perry, A.L. Garrett, Development of useful function in the severely paralyzed hand. J. Bone Joint Surg. 45A(5), 933–952 (1963)

    Article  Google Scholar 

  28. Scientific Instruments, Biorobotics: Build Your Own Robotic Air Muscle Actuator [DIY McKibben AM] (© 2020), https://www.imagesco.com/articles/airmuscle/AirMuscleDescription01.html

  29. mGrip and other grippers (© 2020), https://www.softroboticsinc.com/

  30. Y. Osada, Conversion of chemical onto mechanical energy by synthetic polymers (chemomechanical systems), in Advances in Polymer Science, ed. by S. Olivé, G. Henrici-Olivé, vol. 82, (Springer, © 1987), pp. 1–46. doi.org/10.1007/BFb0024041

  31. Y. Osada, D.E. De Rossi, Polymer Sensors and Actuators (Springer, © 2010)

    Google Scholar 

  32. Y. Osada, A. Khokhlov, Polymer Gels and Networks (Marcel Dekker, © 2002)

    Google Scholar 

  33. Y. Osada, Polymer Sensors and Actuators (Springer, © 2000)

    Google Scholar 

  34. Y. Osada, K. Kajiwara, Gels Handbook (Academic Press/Elsevier, © 2000)

    Google Scholar 

  35. T. Narita, N. Hirota, J.P. Gong, Y. Osada, Effects of counterions and co-ions on the surfactant binding process in the charged polymer network. J. Phys. Chem. 103, 6262–6266 (1999). https://doi.org/10.1021/jp990358l

    Article  CAS  Google Scholar 

  36. M. Uchida, M. Kurosawa, Y. Osada, Swelling process and order-disorder transition of hydrogel containing hydrophobic ionizable groups. Macromolecules 28, 4583–4586 (1995). doi:0024.9297/95/2228-4583

    Article  CAS  Google Scholar 

  37. Y. Osada, S.B. Ross-Murphy, Intelligent gels. Sci. Amer. 268(5), 82–87 (1993). https://doi.org/10.1038/scientificamerican0593-82

    Article  CAS  Google Scholar 

  38. H. Okuzaki, Y. Osada, Electro-driven chemomechanical behaviors of polymer gel based on reversible complex formation with surfactant molecules, and polymer gels: Intelligent soft materials as new energy transducers, in Proceeding of the First Conference on Intelligent Materials, ICIM 92, ed. by T. Takagi, K. Takahashi, M. Aizawa, S. Miyata, (Kanagawa, © 1992)

    Google Scholar 

  39. Y. Osada, H. Okuzaki, H. Hori, A polymer gel with electrically driven motility. Nature 355, 242–243 (1992). https://doi.org/10.1038/355242a0

    Article  CAS  Google Scholar 

  40. D. De Rossi, K. Kaliwara, Y. Osada, A. Yamauchi, Polymer Gels (Plenum Press, New York, © 1991)

    Google Scholar 

  41. M. Miyano, Y. Osada, Electroconductive organogel 2. Appearance and nature of current oscillation under electric field. Macromolecules 24, 4755–4761 (1991). doi:0024.9297/91/2224.4755

    Article  CAS  Google Scholar 

  42. Y. Osada, Chemical valves and gel actuators. Adv. Mater. 3(2), 107–108 (1991). doi:0935-9648/91/0202-0107

    Article  CAS  Google Scholar 

  43. J. Gong, I. Kawakami, Y. Osada, Electroconductive organogel. 4. Electrodriven chemomechanical behaviors of charge-transfer complex gel in organic solvent. Macromolecules 24, 6582–6587 (1991). doi:0024.0207/91/2224.6582

    Article  CAS  Google Scholar 

  44. R. Kishi, Y. Osada, Reversible volume change of microparticles in an electric field. J. Chem. Soc. Faraday Trans. 1 85(3), 655–662 (1989). https://doi.org/10.1039/F19898500655

    Article  CAS  Google Scholar 

  45. Y. Osada, K. Umezawa, A. Yamauchi, Oscillation of electrical current in waterswollen polyelectrolyte gels. Makromol. Chem. 189, 597–605 (1988). doi:0025-116X/88

    Article  CAS  Google Scholar 

  46. Y. Osada, M. Hasebe, Electrically activated mechanochemical devices using polyelectrolyte gels. Chem. Lett. 14(9), 1285–1288 (1985)

    Article  Google Scholar 

  47. Y. Osada, M. Sato, Conversion of chemical into mechanical energy by contractile polymers performed by polymer complexation. Polymer 21, 1057–1061 (1980). doi:0032-3861/80/091057-05

    Article  CAS  Google Scholar 

  48. T. Shiga, Y. Hirose, A. Okada, T. Kurauchi, Bending of a high strength gel in an electric field. Polym. Preprt. 30(1), 310–314 (1998)

    Google Scholar 

  49. T. Shiga, Deformation and viscoelastic behavior of polymer gels in electric fields. Adv. Polym. Sci. 134, 131–162 (1997)

    Article  CAS  Google Scholar 

  50. T. Tanaka, I. Nishio, S.T. Sun, Collapse of gels in an electric field. Science 218, 467–469 (1980). doi:0036-8075/82/1029-0467

    Article  Google Scholar 

  51. T. Tanaka, A.Y. Grosberg, Molecular dynamics of multi-chain coulomb polymers and the effect of salt ions. AIP Conf. Proc. 469, 599–606 (1999). https://doi.org/10.1063/1.58554

    Article  CAS  Google Scholar 

  52. A.E. English, T. Tanaka, E.R. Edelman, Polymer and solution ion shielding in polyampholytic hydrogels. Polymer 39(24), 5893–5897 (1998). https://doi.org/10.1016/S0032-3861(98)00106-2

    Article  CAS  Google Scholar 

  53. E.S. Matsuo, T. Tanaka, Kinetics of discontinuous volume-phase transition of gels. J. Chem. Phys. 89(3), 1695–1703 (1988). https://doi.org/10.1016/S0021-9606/88/151695-09

    Article  CAS  Google Scholar 

  54. S. Hirotsu, Y. Hirowaka, T. Tananka, Volume-phase transitions of ionized n-isopropylacrylamide gels. J. Chem. Phys. 87(2), 1392–1395 (1987). doi:0021-9606/87/141392-04

    Article  CAS  Google Scholar 

  55. T. Tanaka, Gels, in Structure and Dynamics of Biopolymers, NATO ASI Series E, ed. by C. Nicolini, (Martinus Nijhoff Publishers, Boston, © 1987)

    Google Scholar 

  56. T. Tanaka, E. Sato, Y. Hirokawa, S. Hirotsu, J. Peetermans, Critical kinetics of volume phase transitions of gels. Phys. Rev. Lett. 55(22), 2455–2458 (1985). https://doi.org/10.1103/PhysRevLett.55.2455

    Article  CAS  Google Scholar 

  57. T. Tanaka, Critical dynamics, kinetics and phase transitions of polymer gels. Polym. Preprt. 27(1), 235 (1985)

    Google Scholar 

  58. T. Tanaka, Gels. Sci. Amer. 244(1), 124–138 (1981). https://doi.org/10.1038/scientificamerican0181-124

    Article  CAS  Google Scholar 

  59. T. Tanaka, D. Fillmore, S.T. Sun, I. Nishio, G. Swislow, A. Shah, Phase transition in ionic gels. Phys. Rev. Lett. 45(20), 1636–1639 (1980). https://doi.org/10.1103/PhysRevLett.45.1636

    Article  CAS  Google Scholar 

  60. V.V. Vasilevskaya, I.I. Potemkin, A.R. Khokhlov, Swelling and collapse of physical gels formed by associating telechelic polyelectrolytes. Langmuir 15, 7918–7924 (1999). https://doi.org/10.1021/la981057q

    Article  CAS  Google Scholar 

  61. R.A. Haslam, M. Boocock, P. Lemon, S. Thorpe, Safety Sci. 40, 625–637 (© 2002)

    Google Scholar 

  62. L. Rasmussen, P.N. Vicars, C. Briggs, T. Cheng, E.A. Clancy, S. Carey, B. Secino, Synthetic muscle electroactive polymer shape-morphing and pressure sensing for robotic grippers. Proc. SPIE 11375, 1137505 (2020). https://doi.org/10.1117/12.2558965

    Article  Google Scholar 

  63. NASA Space Radiation Analysis Group, Johnson Space Center (© 2019), https://srag.jsc.nasa.gov/SpaceRadiation/What/What.cfm

  64. National Institute of Standards and Technology, Radionuclide Half-Life Measurements (© 2010), http://www.nist.gov/pml/data/halflife-html.cfm

  65. R.L. Fleischer, P.B. Price, R.M. Walker, Nuclear Tracks in Solids: Principles and Applications, Chapter 2. (University of California Press, © 1975), p. 54

    Google Scholar 

  66. P.B. Price, L.R. Fleischer, Identification of energetic heavy nuclei with solid dielectric track detectors: Applications to astrophysical and planetary studies. Annu. Rev. Nucl. Sci. 21(310) (1971). doi/abs/10.1146/annurev.ns.21.120171.001455

  67. G.M. Comstock, R.L. Fleischer, W.L. Giard, H.R. Hart, G.E. Nichols, P.B. Price, Cosmic-ray tracks in plastics: The Apollo helmet dosimetry experiment. Science 172, 154–156 (1971)

    Article  CAS  Google Scholar 

  68. R.L. Fleischer, Tracks to Innovation (Springer, © 1998), p. 121

    Google Scholar 

  69. S. Kelly, Endurance: My Year in Space, a Lifetime of Discovery (Knopf Penguin Random House, © 2017)

    Google Scholar 

  70. US Geological Survey, US Department of the Interior (© 2020), www.usgs.gov/special-topic/water-science-school/science/water-you-water-and-human-body?qt-science_center_objects=0#qt-science_center_objects

  71. L. Rasmussen, L.D. Meixler, C.A. Gentile, Contractile electroactive materials and actuators. Proc. SPIE 8340(10), 1–14 (2012)

    Google Scholar 

  72. M. Chaplin, Peroxide and Oxygen Radicals, in Water Structure and Science, Creative Commons. (2020). www1.lsbu.ac.uk/water/o2water.html

  73. K. Tomanova, M. Precek, V. Mucka, V. Vysin, L. Jiha, V. Cuba, At the crossroad of photochemistry and radiation chemistry: Formation of hydroxyl radicals in diluted aqueous solutions exposed to ultraviolet radiation. Phys. Chem. Chem. Phys. 19, 29402–29408 (2017). https://doi.org/10.1039/C7CP05125E

    Article  CAS  Google Scholar 

  74. Mechno-arm (© 2020), https://starwars.fandom.com/wiki/Mechno-arm

  75. B. Patel, Synthetic Skin Sensitive to the Lightest Touch (© 2010), https://spectrum.ieee.org/biomedical/bionics/synthetic-skin-sensitive-to-the-lightest-touch

  76. Y. Jiang, U. Mansfield, K. Kratz, A. Lendlein, Programmable microscale stiffness pattern of flat polymeric substrates by temperature-memory technology. MRS Commun. 9(01), 181–188 (2019)

    Article  CAS  Google Scholar 

  77. W.G. Bircher, A.M. Dollar, A. Morgan, OpenHand (© 2020), https://www.eng.yale.edu/grablab/openhand/

  78. L. Rasmussen, S. Rodriguez, M. Bowers, D. Smith, G. Martino, L. Rizzo, C. Scheiber, J. d’Almeida, C. Dillis, Adjustable liners and sockets for prosthetic devices. Can Prosth. & Ortho J. 1(2), 1–3 (2018)

    Google Scholar 

  79. L. Rasmussen, S. Rodriguez, M. Bowers, D. Smith, G. Martino, L. Moy, P.D. Mark, D. Prillaman, R. Nodarse, R. Carpenter, D. Martin, C. Scheiber, J. d’Almeida, Synthetic muscle electroactive polymer based actuation and pressure sensing for prosthetic and robotic gripper applications. Proc. SPIE 10966, 1096626 (2019). https://doi.org/10.1117/12.2514429

    Article  Google Scholar 

  80. Discussions with prosthetic experts: Mt Sterling, OH, 2016-present; Duderstadt, Germany, 2017; with Dr. Matthew Maltese, Children’s Hospital of Philadelphia, Philadelphia, PA, 2015-present; and with Dr. Todd Farrell, LTI, Holliston, MA 2015-present

    Google Scholar 

  81. W. Burngardner, Very Well Fit (© 2018), www.verywellfit.com/whats-typical-for-average-daily-steps-3435736

  82. Industrial Safety & Hygiene News, Statistics on Hand and Arm Loss, BNP Media (© 2018), http://www.ishn.com/articles/97844-statistics-on-hand-and-arm-loss

  83. Access Prosthetics, Living with Limb Loss (© 2017), https://accessprosthetics.com/15-limb-loss-statistics-may-surprise/

  84. D.S. Smith, Partial-Hand Amputations. inMotion, 17(1). (© 2007), https://www.amputee-coalition.org/wp-content/uploads/2015/05/partial_hand.pdf

  85. G. Roddenberry, Star Trek: Original Series and Star Trek: The Next Generation, 1966–1969 and 1987–1994

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the National Science Foundation, the Center for the Advancement of Science in Space, the Kalenian Award, Breakout Labs, Children’s Hospital of Philadelphia/Philadelphia Pediatric Medical Device Consortium, the US DOE, and the US DOD for funding of the synthetic muscle projects. We gratefully acknowledge Livia Rizzo of the Harvard Medical School MedScience Program and interns Curran Dillis, Cole Schreiber, and Jesse d’Almeida for their work with the customized 3D printed prosthetic hand. STEM internships were supported in part through the MLSC Internship Challenge and the PPPL NUF and SULI Programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenore Rasmussen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rasmussen, L. et al. (2022). Synthetic Muscle™ for Deep Space Travel and Other Applications on Earth and in Space. In: Rasmussen, L. (eds) Smart Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-70514-5_1

Download citation

Publish with us

Policies and ethics