Skip to main content

Biological and Medical Applications of Magnetic Nanoparticles

  • Chapter
  • First Online:
Magnetic Measurement Techniques for Materials Characterization

Abstract

This chapter aims to give insight into the successes, challenges, and opportunities of magnetic nanoparticles for bio-applications. It reviews their general requirements and how they can be met by different synthesis methods and characterization techniques. It then focuses on examples of applications such as magnetic cell separation, magnetic detection (including imaging), and magnetic particle-based therapies, such as hyperthermia, magneto-mechanical destruction of tumors, localized drug delivery, and tissue engineering. We hope to guide the reader interested in applied research of magnetic nanoparticles through an exciting collection of investigations on their application in the life sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Knobel et al., Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J. Nanosci. Nanotechnol. 8(6), 2836–2857 (2008)

    Article  CAS  Google Scholar 

  2. C. Vasilescu et al., High concentration aqueous magnetic fluids: structure, colloidal stability, magnetic and flow properties. Soft Matter 14(32), 6648–6666 (2018)

    Article  CAS  Google Scholar 

  3. N. Hoshyar et al., The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11(6), 673–692 (2016)

    Article  CAS  Google Scholar 

  4. A. Jurj et al., The new era of nanotechnology, an alternative to change cancer treatment. Drug Des. Devel. Ther. 11, 2871–2890 (2017)

    Article  CAS  Google Scholar 

  5. Y. Geng et al., Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2(4), 249–255 (2007)

    Article  CAS  Google Scholar 

  6. A.B. Jindal, The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int. J. Pharm. 532(1), 450–465 (2017)

    Article  CAS  Google Scholar 

  7. G. Sharma et al., Polymer particle shape independently influences binding and internalization by macrophages. J. Control. Release 147(3), 408–412 (2010)

    Article  CAS  Google Scholar 

  8. A.L. Cortajarena et al., Engineering iron oxide nanoparticles for clinical settings. Nano 1, 2 (2014)

    Google Scholar 

  9. J. Ahmad et al., Differential cytotoxicity of copper ferrite nanoparticles in different human cells. J. Appl. Toxicol. 36(10), 1284–1293 (2016)

    Article  CAS  Google Scholar 

  10. A. Hanini et al., Nanotoxicological study of polyol-made cobalt-zinc ferrite nanoparticles in rabbit. Environ. Toxicol. Pharmacol. 45, 321–327 (2016)

    Article  CAS  Google Scholar 

  11. S.Y. Srinivasan et al., Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine 13(10), 1221–1238 (2018)

    Article  CAS  Google Scholar 

  12. Q. Feng et al., Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci. Rep. 8(1), 2082 (2018)

    Article  CAS  Google Scholar 

  13. D. Bobo et al., Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33(10), 2373–2387 (2016)

    Article  CAS  Google Scholar 

  14. U. Engelmann et al., Agglomeration of magnetic nanoparticles and its effects on magnetic hyperthermia, in Current Directions in Biomedical Engineering, (2017), p. 457

    Google Scholar 

  15. B. Halamoda-Kenzaoui et al., The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation. J. Nanobiotechnol. 15(1), 48–48 (2017)

    Article  CAS  Google Scholar 

  16. Y. Wang et al., Study of superparamagnetic nanoparticles as labels in the quantitative lateral flow immunoassay. Mater. Sci. Eng. C 29(3), 714–718 (2009)

    Article  CAS  Google Scholar 

  17. M. Salvador et al., Improved magnetic lateral flow assays with optimized nanotags for point-of-use inductive biosensing. Analyst 145(17), 5905–5914 (2020)

    Article  CAS  Google Scholar 

  18. E. Amstad, M. Textor, E. Reimhult, Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale 3(7), 2819–2843 (2011)

    Article  CAS  Google Scholar 

  19. R.A. Bohara, N.D. Thorat, S.H. Pawar, Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv. 6(50), 43989–44012 (2016)

    Article  CAS  Google Scholar 

  20. R. Mout et al., Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev. 41(7), 2539–2544 (2012)

    Article  CAS  Google Scholar 

  21. A. Moyano et al., Carbon-coated superparamagnetic nanoflowers for biosensors based on lateral flow immunoassays. Biosensors 10(8), 80 (2020)

    Article  CAS  Google Scholar 

  22. M. Vasilakaki et al., Effect of albumin mediated clustering on the magnetic behavior of MnFe2O4 nanoparticles: experimental and theoretical modeling study. Nanotechnology 31(2), 025707 (2019)

    Article  CAS  Google Scholar 

  23. J. Salafranca et al., Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces. Nano Lett. 12(5), 2499–2503 (2012)

    Article  CAS  Google Scholar 

  24. R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17(2), 1247–1248 (1981)

    Article  Google Scholar 

  25. V.K. LaMer, R.H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72(11), 4847–4854 (1950)

    Article  CAS  Google Scholar 

  26. G. Cotin et al., Unravelling the thermal decomposition parameters for the synthesis of anisotropic iron oxide nanoparticles. Nano 8(11), 881 (2018)

    Google Scholar 

  27. M. Unni et al., Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano 11(2), 2284–2303 (2017)

    Article  CAS  Google Scholar 

  28. M.E. Brollo Fortes et al., Key parameters on the microwave assisted synthesis of magnetic nanoparticles for MRI contrast agents. Contrast Media Mol. Imaging 2017, 13 (2017)

    Google Scholar 

  29. L. Gonzalez-Moragas et al., Scale-up synthesis of iron oxide nanoparticles by microwave-assisted thermal decomposition. Chem. Eng. J. 281, 87–95 (2015)

    Article  CAS  Google Scholar 

  30. A. Scano et al., Microemulsions: the renaissance of ferrite nanoparticle synthesis. J. Nanosci. Nanotechnol. 19(8), 4824–4838 (2019)

    Article  CAS  Google Scholar 

  31. S.S. Staniland et al., Chapter 3: Novel methods for the synthesis of magnetic nanoparticles, in Frontiers of Nanoscience, ed. by C. Binns, (Elsevier, 2014), pp. 85–128

    Google Scholar 

  32. M. Salvador et al., Synthesis of superparamagnetic iron oxide nanoparticles: SWOT analysis towards their conjugation to biomolecules for molecular recognition applications. J. Nanosci. Nanotechnol. 19(8), 4839–4856 (2019)

    Article  CAS  Google Scholar 

  33. A.G. Roca et al., Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl.Phys. 42(22), 224002 (2009)

    Article  CAS  Google Scholar 

  34. S. Bogren et al., Classification of magnetic nanoparticle systems—synthesis, standardization and analysis methods in the NanoMag Project. Int. J. Mol. Sci. 16(9), 20308–20325 (2015)

    Article  CAS  Google Scholar 

  35. L. Chang et al., Facile one-pot synthesis of magnetic Prussian blue core/shell nanoparticles for radioactive cesium removal. RSC Adv. 6(98), 96223–96228 (2016)

    Article  CAS  Google Scholar 

  36. S. Upadhyay, K. Parekh, B. Pandey, Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. J. Alloys Compd. 678, 478–485 (2016)

    Article  CAS  Google Scholar 

  37. B. Michen et al., TEM sample preparation of nanoparticles in suspensions—understanding the formation of drying artefacts. Imaging Microsc. (2014)

    Google Scholar 

  38. S. Akhtar, F.A. Khan, A. Buhaimed, Functionalized magnetic nanoparticles attenuate cancer cells proliferation: Transmission electron microscopy analysis. Microsc. Res. Tech. 82(7), 983–992 (2019)

    Article  CAS  Google Scholar 

  39. A. Rao et al., Characterization of nanoparticles using atomic force microscopy. J. Phys. Conf. Ser. 61, 971–976 (2007)

    Article  CAS  Google Scholar 

  40. A. Krivcov, T. Junkers, H. Möbius, Understanding electrostatic and magnetic forces in magnetic force microscopy: towards single superparamagnetic nanoparticle resolution. J. Phys. Commun. 2(7), 075019 (2018)

    Article  CAS  Google Scholar 

  41. C. Moya et al., Superparamagnetic versus blocked states in aggregates of Fe3−xO4 nanoparticles studied by MFM. Nanoscale 7(42), 17764–17770 (2015)

    Article  CAS  Google Scholar 

  42. C. Bantz et al., The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Beilstein J. Nanotechnol. 5, 1774–1786 (2014)

    Article  CAS  Google Scholar 

  43. K. Rausch et al., Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules 11(11), 2836–2839 (2010)

    Article  CAS  Google Scholar 

  44. V. Filipe, A. Hawe, W. Jiskoot, Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 27(5), 796–810 (2010)

    Article  CAS  Google Scholar 

  45. P. Eaton et al., A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. Ultramicroscopy 182, 179–190 (2017)

    Article  CAS  Google Scholar 

  46. A. Méndez-Vilas, J. Díaz, Microscopy: Science, Technology, Applications and Education (Formatex Research Center, Badajoz, 2010)

    Google Scholar 

  47. T. Chatterji, Neutron Scattering from Magnetic Materials (Elsevier Science, Boston, 2006)

    Google Scholar 

  48. M.P. Fernández-García et al., Microstructure and magnetism of nanoparticles with γ-Fe core surrounded by α-Fe and iron oxide shells. Phys. Rev. B 81(9), 094418 (2010)

    Article  CAS  Google Scholar 

  49. M.P. Fernández-García et al., Enhanced protection of carbon-encapsulated magnetic nickel nanoparticles through a sucrose-based synthetic strategy. J. Phys. Chem. C 115(13), 5294–5300 (2011)

    Article  CAS  Google Scholar 

  50. J. Fock et al., On the ‘centre of gravity’ method for measuring the composition of magnetite/maghemite mixtures, or the stoichiometry of magnetite-maghemite solid solutions, via57Fe Mössbauer spectroscopy. J. Phys. D: Appl. Phys. 50(26), 265005 (2017)

    Article  CAS  Google Scholar 

  51. A.V. Delgado et al., Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 309(2), 194–224 (2007)

    Article  CAS  Google Scholar 

  52. D.L. Pavia et al., Introduction to Spectroscopy (Cengage Learning, London, 2008)

    Google Scholar 

  53. O. Bixner et al., Complete exchange of the hydrophobic dispersant shell on monodisperse superparamagnetic iron oxide nanoparticles. Langmuir 31(33), 9198–9204 (2015)

    Article  CAS  Google Scholar 

  54. R.L. McCreery, Raman Spectroscopy for Chemical Analysis, vol 225 (Wiley, New York, 2005)

    Google Scholar 

  55. L. Slavov et al., Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids. J. Magn. Magn. Mater. 322(14), 1904–1911 (2010)

    Article  CAS  Google Scholar 

  56. J.C. Rubim et al., Raman spectroscopy as a powerful technique in the characterization of ferrofluids. Braz. J. Phys. 31, 402–408 (2001)

    Article  CAS  Google Scholar 

  57. H. Konno, Chapter 8: X-ray photoelectron spectroscopy, in Materials Science and Engineering of Carbon, ed. by M. Inagaki, F. Kang, (Butterworth-Heinemann, 2016), pp. 153–171

    Google Scholar 

  58. T. Radu et al., X-Ray photoelectron spectroscopic characterization of iron oxide nanoparticles. Appl. Surf. Sci. 405, 337–343 (2017)

    Article  CAS  Google Scholar 

  59. A.G. Shard, A straightforward method for interpreting XPS data from core–shell nanoparticles. J. Phys. Chem. C 116(31), 16806–16813 (2012)

    Article  CAS  Google Scholar 

  60. D. Farhanian, G. De Crescenzo, J.R. Tavares, Large-scale encapsulation of magnetic iron oxide nanoparticles via syngas photo-initiated chemical vapor deposition. Sci. Rep. 8(1), 12223 (2018)

    Article  CAS  Google Scholar 

  61. P. Gabbott, Principles and Applications of Thermal Analysis (Wiley, Singapore, 2008)

    Book  Google Scholar 

  62. E. Mansfield et al., Determination of nanoparticle surface coatings and nanoparticle purity using microscale thermogravimetric analysis. Anal. Chem. 86(3), 1478–1484 (2014)

    Article  CAS  Google Scholar 

  63. D. Pröfrock, A. Prange, Inductively Coupled Plasma–Mass Spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends. Appl. Spectrosc. 66(8), 843–868 (2012)

    Article  CAS  Google Scholar 

  64. R. Costo et al., Improving the reliability of the iron concentration quantification for iron oxide nanoparticle suspensions: a two-institutions study. Anal. Bioanal. Chem. 411(9), 1895–1903 (2019)

    Article  CAS  Google Scholar 

  65. C. Fornaguera, C. Solans, Characterization of polymeric nanoparticle dispersions for biomedical applications: size, surface charge and stability. Pharmaceut. Nanotechnol. 6(3), 147–164 (2018)

    Article  CAS  Google Scholar 

  66. S. Foner, Vibrating sample magnetometer. Rev. Sci. Instrum. 27(7), 548–548 (1956)

    Article  Google Scholar 

  67. P.J. Flanders, A vertical force alternating-gradient magnetometer. Rev. Sci. Instrum. 61(2), 839–847 (1990)

    Article  CAS  Google Scholar 

  68. R.B. Goldfarb, M. Lelental, C. Thompson, Alternating-field susceptometry and magnetic susceptibility of superconductors, in Magnetic Susceptibility of Superconductors and Other Spin Systems, ed. by R. A. Hein, T. L. Francavilla, D. H. Liebenberg, (Springer, New York, 1991), pp. 49–80

    Chapter  Google Scholar 

  69. M.F. Hansen, S. Mørup, Estimation of blocking temperatures from ZFC/FC curves. J. Magn. Magn. Mater. 203(1), 214–216 (1999)

    Article  CAS  Google Scholar 

  70. D. Peddis et al., Chapter 4: Magnetic interactions: a tool to modify the magnetic properties of materials based on nanoparticles, in Frontiers of Nanoscience, ed. by C. Binns, (Elsevier, 2014), pp. 129–188

    Google Scholar 

  71. K.L. Livesey et al., Beyond the blocking model to fit nanoparticle ZFC/FC magnetisation curves. Sci. Rep. 8(1), 11166 (2018)

    Article  CAS  Google Scholar 

  72. O. Petracic, Superparamagnetic nanoparticle ensembles. Superlattice. Microst. 47(5), 569–578 (2010)

    Article  CAS  Google Scholar 

  73. J.A. De Toro et al., Controlled close-packing of ferrimagnetic nanoparticles: an assessment of the role of interparticle superexchange versus dipolar interactions. J. Phys. Chem. C 117(19), 10213–10219 (2013)

    Article  CAS  Google Scholar 

  74. E.P. Wohlfarth, Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles. J. Appl. Phys. 29(3), 595–596 (1958)

    Article  Google Scholar 

  75. J.L. Dormann, D. Fiorani, E. Tronc, Magnetic relaxation in fine-particle systems, in Advances in Chemical Physics, (Wiley, New York, 1997), pp. 283–494

    Google Scholar 

  76. E. De Biasi, J. Curiale, R.D. Zysler, Quantitative study of FORC diagrams in thermally corrected Stoner– Wohlfarth nanoparticles systems. J. Magn. Magn. Mater. 419, 580–587 (2016)

    Article  CAS  Google Scholar 

  77. F. Groß et al., gFORC: A graphics processing unit accelerated first-order reversal-curve calculator. J. Appl. Phys. 126(16)), 163901 (2019)

    Article  CAS  Google Scholar 

  78. C.R. Pike, A.P. Roberts, K.L. Verosub, First order reversal curve diagrams and thermal relaxation effects in magnetic particles. Geophys. J. Int. 145(3), 721–730 (2001)

    Article  Google Scholar 

  79. A.C. Bohorquez, C. Rinaldi, In situ evaluation of nanoparticle–protein interactions by dynamic magnetic susceptibility measurements. Part. Part. Syst. Charact. 31(5), 561–570 (2014)

    Article  CAS  Google Scholar 

  80. V.L.C.-D. Castillo, C. Rinaldi, Effect of sample concentration on the determination of the anisotropy constant of magnetic nanoparticles. IEEE Trans. Magn. 46(3), 852–859 (2010)

    Article  CAS  Google Scholar 

  81. M.A. Garcia et al., Sources of experimental errors in the observation of nanoscale magnetism. J. Appl. Phys. 105(1), 013925 (2009)

    Article  CAS  Google Scholar 

  82. S.E. McNeil, Characterization of Nanoparticles Intended for Drug Delivery, vol 697 (Springer, Humana Press, Totowa, NJ, 2011)

    Google Scholar 

  83. J.W. Wills et al., Characterizing nanoparticles in biological matrices: tipping points in agglomeration state and cellular delivery in vitro. ACS Nano 11(12), 11986–12000 (2017)

    Article  CAS  Google Scholar 

  84. D. Baragaño et al., Magnetite nanoparticles for the remediation of soils co-contaminated with As and PAHs. Chem. Eng. J. 399, 125809 (2020)

    Article  CAS  Google Scholar 

  85. O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, Magnetic adsorbents based on micro- and nano-structured materials. RSC Adv. 5(9), 6695–6719 (2015)

    Article  CAS  Google Scholar 

  86. D. Lago-Cachón et al., HeLa cells separation using MICA antibody conjugated to magnetite nanoparticles. Phys. Status Solidi C 11(5–6), 1043–1047 (2014)

    Article  CAS  Google Scholar 

  87. S.P. Schwaminger et al., Magnetic separation in bioprocessing beyond the analytical scale: from biotechnology to the food industry. Front Bioeng Biotechnol 7, 233 (2019)

    Article  Google Scholar 

  88. N.J. Darton, A. Ionescu, Sensing magnetic nanoparticles, in Magnetic Nanoparticles in Biosensing and Medicine, ed. by A. Ionescu, J. Llandro, N. J. Darton, (Cambridge University Press, Cambridge, 2019), pp. 172–227

    Chapter  Google Scholar 

  89. Y.T. Chen et al., Biosensing using magnetic particle detection techniques. Sensors (Basel) 17(10), 2300 (2017)

    Article  CAS  Google Scholar 

  90. G. Lin, D. Makarov, O.G. Schmidt, Magnetic sensing platform technologies for biomedical applications. Lab Chip 17(11), 1884–1912 (2017)

    Article  CAS  Google Scholar 

  91. D. Budker, M. Romalis, Optical magnetometry. Nat. Phys. 3(4), 227–234 (2007)

    Article  CAS  Google Scholar 

  92. D. Alcantara et al., Iron oxide nanoparticles as magnetic relaxation switching (MRSw) sensors: current applications in nanomedicine. Nanomed.: Nanotechnol. Biol. Med. 12(5), 1253–1262 (2016)

    Article  CAS  Google Scholar 

  93. S.X. Wang, G. Li, Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE Trans. Magn. 44(7), 1687–1702 (2008)

    Article  Google Scholar 

  94. D. Su et al., Advances in magnetoresistive biosensors. Micromachines 11(1), 34 (2020)

    Article  Google Scholar 

  95. B. Srinivasan et al., A three-layer competition-based giant magnetoresistive assay for direct quantification of Endoglin from human urine. Anal. Chem. 83(8), 2996–3002 (2011)

    Article  CAS  Google Scholar 

  96. A. Fu et al., Protein-functionalized synthetic antiferromagnetic nanoparticles for biomolecule detection and magnetic manipulation. Angew. Chem. Int. Ed. 48(9), 1620–1624 (2009)

    Article  CAS  Google Scholar 

  97. A. Cousins et al., Novel handheld magnetometer probe based on magnetic tunnelling junction sensors for intraoperative sentinel lymph node identification. Sci. Rep. 5, 10842 (2015)

    Article  CAS  Google Scholar 

  98. K. Togawa et al., Detection of magnetically labeled DNA using pseudomorphic AlGaAs∕InGaAs∕GaAs heterostructure micro-Hall biosensors. J. Appl. Phys. 99(8), 08P103 (2006)

    Article  CAS  Google Scholar 

  99. D. Issadore et al., Ultrasensitive clinical enumeration of rare cells ex vivo using a micro-hall detector. Sci Transl Med 4(141), 141ra92 (2012)

    Article  CAS  Google Scholar 

  100. B. Cao et al., Development of magnetic sensor technologies for point-of-care testing: fundamentals, methodologies and applications. Sensors Actuat. A: Phys. 312, 112130 (2020)

    Article  CAS  Google Scholar 

  101. J.A. Goode, J.V.H. Rushworth, P.A. Millner, Biosensor regeneration: a review of common techniques and outcomes. Langmuir 31(23), 6267–6276 (2015)

    Article  CAS  Google Scholar 

  102. K.M. Koczula, A. Gallotta, Lateral flow assays. Essays Biochem. 60(1), 111–120 (2016)

    Article  Google Scholar 

  103. A. Moyano et al., Magnetic immunochromatographic test for histamine detection in wine. Anal. Bioanal. Chem. 411(25), 6615–6624 (2019)

    Article  CAS  Google Scholar 

  104. C. Marquina et al., GMR sensors and magnetic nanoparticles for immuno-chromatographic assays. J. Magn. Magn. Mater. 324(21), 3495–3498 (2012)

    Article  CAS  Google Scholar 

  105. A. Moyano et al., Magnetic lateral flow immunoassays. Diagnostics 10(5), 288 (2020)

    Article  CAS  Google Scholar 

  106. A. Elyacoubi et al., Development of an amperometric enzymatic biosensor based on gold modified magnetic nanoporous microparticles. Electroanalysis 18(4), 345–350 (2006)

    Article  CAS  Google Scholar 

  107. M.-H. Liao, J.-C. Guo, W.-C. Chen, A disposable amperometric ethanol biosensor based on screen-printed carbon electrodes mediated with ferricyanide-magnetic nanoparticle mixture. J. Magn. Magn. Mater. 304(1), e421–e423 (2006)

    Article  CAS  Google Scholar 

  108. J.-M. Nam, C.S. Thaxton, C.A. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641), 1884–1886 (2003)

    Article  CAS  Google Scholar 

  109. S.I. Stoeva et al., Multiplexed DNA detection with biobarcoded nanoparticle probes. Angew. Chem. Int. Ed. 45(20), 3303–3306 (2006)

    Article  CAS  Google Scholar 

  110. B.H. Kim et al., Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 133(32), 12624–12631 (2011)

    Article  CAS  Google Scholar 

  111. L. Wang et al., Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T1–T2 switchable magnetic resonance imaging contrast. ACS Nano 11(5), 4582–4592 (2017)

    Article  CAS  Google Scholar 

  112. X. Yin et al., Large T1 contrast enhancement using superparamagnetic nanoparticles in ultra-low field MRI. Sci. Rep. 8(1), 11863 (2018)

    Article  CAS  Google Scholar 

  113. M.P. Morales et al., Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis. J. Magn. Magn. Mater. 266(1), 102–109 (2003)

    Article  CAS  Google Scholar 

  114. J. Estelrich, M.J. Sánchez-Martín, M.A. Busquets, Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int. J. Nanomed. 10, 1727–1741 (2015)

    CAS  Google Scholar 

  115. J.-t. Jang et al., Critical enhancements of MRI contrast and hyperthermic effects by Dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed. 48(7), 1234–1238 (2009)

    Article  CAS  Google Scholar 

  116. E. Peng, F. Wang, J.M. Xue, Nanostructured magnetic nanocomposites as MRI contrast agents. J. Mater. Chem. B 3(11), 2241–2276 (2015)

    Article  CAS  Google Scholar 

  117. B. Gleich, J. Weizenecker, Tomographic imaging using the nonlinear response of magnetic particles. Nature 435(7046), 1214–1217 (2005)

    Article  CAS  Google Scholar 

  118. L.M. Bauer et al., Magnetic particle imaging tracers: state-of-the-art and future directions. J. Phys. Chem. Lett. 6(13), 2509–2517 (2015)

    Article  CAS  Google Scholar 

  119. S. Zanganeh et al., Chapter 5: Magnetic Particle Imaging (MPI), in Iron Oxide Nanoparticles for Biomedical Applications, ed. by M. Mahmoudi, S. Laurent, (Elsevier, Amsterdam, 2018), pp. 115–133

    Chapter  Google Scholar 

  120. E.U. Saritas et al., Magnetic Particle Imaging (MPI) for NMR and MRI researchers. J. Magn. Reson. 229, 116–126 (2013)

    Article  CAS  Google Scholar 

  121. N. Panagiotopoulos et al., Magnetic particle imaging: current developments and future directions. Int. J. Nanomed. 10, 3097–3114 (2015)

    Article  CAS  Google Scholar 

  122. R. Lawaczeck et al., Magnetic iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting:pre-clinical profile of SH U555A. Acta Radiol. 38(4), 584–597 (1997)

    CAS  Google Scholar 

  123. R.K. Gilchrist et al., Selective inductive heating of lymph nodes. Ann. Surg. 146(4), 596–606 (1957)

    Article  CAS  Google Scholar 

  124. W.J. Atkinson, I.A. Brezovich, D.P. Chakraborty, Usable frequencies in hyperthermia with thermal seeds. IEEE Trans. Biomed. Eng. BME-31(1), 70–75 (1984)

    Article  Google Scholar 

  125. E. Garaio et al., Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry). Nanotechnology 26(1), 015704 (2014)

    Article  CAS  Google Scholar 

  126. D. Cabrera et al., Instrumentation for magnetic hyperthermia, in Nanomaterials for Magnetic and Optical Hyperthermia Applications, (Elsevier, Amsterdam, 2019), pp. 111–138

    Chapter  Google Scholar 

  127. L. Asín et al., Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration. Pharm. Res. 29(5), 1319–1327 (2012)

    Article  CAS  Google Scholar 

  128. N. Telling, Chapter 7: High-frequency magnetic response and hyperthermia from nanoparticles in cellular environments, in Nanomaterials for Magnetic and Optical Hyperthermia Applications, ed. by R. M. Fratila, J. M. De La Fuente, (Elsevier, Amsterdam, 2019), pp. 173–197

    Chapter  Google Scholar 

  129. Magforce®: The nanomedicine company. June 2020. Available from: https://www.magforce.com/en/home/

  130. H.D.A. Santos et al., In vivo early tumor detection and diagnosis by infrared luminescence transient nanothermometry. Adv. Funct. Mater. 28(43), 1803924 (2018)

    Article  CAS  Google Scholar 

  131. R. Mansell et al., Magnetic particles with perpendicular anisotropy for mechanical cancer cell destruction. Sci. Rep. 7(1), 4257 (2017)

    Article  CAS  Google Scholar 

  132. E.A. Vitol, V. Novosad, E.A. Rozhkova, Microfabricated magnetic structures for future medicine: from sensors to cell actuators. Nanomedicine 7(10), 1611–1624 (2012)

    Article  CAS  Google Scholar 

  133. H. Chiriac et al., Fe–Cr–Nb–B ferromagnetic particles with shape anisotropy for cancer cell destruction by magneto-mechanical actuation. Sci. Rep. 8(1), 11538 (2018)

    Article  CAS  Google Scholar 

  134. M. Goiriena-Goikoetxea et al., High-yield fabrication of 60 nm Permalloy nanodiscs in well-defined magnetic vortex state for biomedical applications. Nanotechnology 27(17), 175302 (2016)

    Article  CAS  Google Scholar 

  135. R. Singh, J.W. Lillard, Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86(3), 215–223 (2009)

    Article  CAS  Google Scholar 

  136. S. Jafari et al., Magnetic drilling enhances intra-nasal transport of particles into rodent brain. J. Magn. Magn. Mater. 469, 302–305 (2019)

    Article  CAS  Google Scholar 

  137. D. Kuzajewska et al., Magnetotactic bacteria and magnetosomes as smart drug delivery systems: a new weapon on the battlefield with cancer? Biology 9(5), 102 (2020)

    Article  CAS  Google Scholar 

  138. O. Felfoul et al., Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11(11), 941–947 (2016)

    Article  CAS  Google Scholar 

  139. S.K. Alsaiari et al., Magnetotactic bacterial cages as safe and smart gene delivery vehicles. OpenNano 1, 36–45 (2016)

    Article  Google Scholar 

  140. D. Gandia et al., Unlocking the potential of magnetotactic bacteria as magnetic hyperthermia agents. Small 15(41), 1902626 (2019)

    Article  CAS  Google Scholar 

  141. M. Bañobre-López et al., Hyperthermia induced in magnetic scaffolds for bone tissue engineering. IEEE Trans. Magn. 50(11), 1–7 (2014)

    Article  CAS  Google Scholar 

  142. T. Kobayashi et al., Augmentation of degenerated human cartilage in vitro using magnetically labeled mesenchymal stem cells and an external magnetic device. Arthrosc.: J. Arthrosc. Rel. Surg. 25(12), 1435–1441 (2009)

    Article  Google Scholar 

  143. R.A. Pareta, E. Taylor, T.J. Webster, Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparticles. Nanotechnology 19(26), 265101 (2008)

    Article  CAS  Google Scholar 

  144. Y. Gao et al., Emerging translational research on magnetic nanoparticles for regenerative medicine. Chem. Soc. Rev. 44(17), 6306–6329 (2015)

    Article  CAS  Google Scholar 

  145. ISO. ISO/TS 19807–1:2019 Nanotechnologies — Magnetic nanomaterials — Part 1: Specification of characteristics and measurements for magnetic nanosuspensions. June 2020]; Available from: https://www.iso.org/standard/66237.html

Download references

Acknowledgments

The authors sincerely thank R. B. Goldfarb, J. A. Blanco, and P. Gorria for fruitful discussions and valuable suggestions. The authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness with grants MAT2017-84959-C2-1-R and RTI2018-094683-B-C52, the Principality of Asturias with project IDI/2018/000185 and the University of Oviedo with PAPI-18-EMERG-8/2018/00061/008. M. Salvador thanks the Council of Gijon/IUTA, University of Oviedo, and the Principality of Asturias for their pre-doctoral grants (SV-20-GIJON-1-22 and PA-20-PF-BP19-141), the Spanish Ministry of Education, Culture and Sport and Banco Santander for grant CEI15-24.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montserrat Rivas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salvador, M., Martínez-García, J.C., Fernández-García, M.P., Blanco-López, M.C., Rivas, M. (2021). Biological and Medical Applications of Magnetic Nanoparticles. In: Franco, V., Dodrill, B. (eds) Magnetic Measurement Techniques for Materials Characterization. Springer, Cham. https://doi.org/10.1007/978-3-030-70443-8_26

Download citation

Publish with us

Policies and ethics