Skip to main content

Digital Farming and Field Robotics: Internet of Things, Cloud Computing, and Big Data

  • Chapter
  • First Online:
Fundamentals of Agricultural and Field Robotics

Part of the book series: Agriculture Automation and Control ((AGAUCO))

Abstract

In recent years, agriculture has been facing an increasingly urgent demand to increase food production while reducing the use of various farming inputs such as nutrients, water, and labor. Many scientific disciplines are joining forces in order to accomplish this aim. From a technical perspective, precision farming is offering optimized infield performances. Although the technical capabilities of machinery performing infield operations are already well developed, the precision and the efficiency of the agricultural tasks could be further enhanced by smart farming technologies offered by the new digital era. The digital transformation of agriculture is being facilitated by the emergence of technologies focused on data acquisition and data management, which are expected to have a profound impact on everyday decision-making. Widely used precision farming techniques and tools, combined with technological developments in the areas of Internet of Things (IoT), cloud computing, and innovative big data analytics, are expected to revolutionize farming. This agricultural revolution, in many cases, is being referred to as “Agriculture 4.0” or “Digital Farming.” This chapter is presenting basic principles and overview of the relevant technologies such as IoT, cloud computing, and big data as it applies to agriculture. The emerging trends of each of these technologies that could potentially have a substantial effect in the agricultural domain are also discussed. In an effort to describe this Digital Farming ecosystem, the conceptual architecture that integrates all mentioned technologies is defined together with a vision on how these relevant components need to be interconnected in the future so that Agriculture 4.0 can be turned into a reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abecker A, Kutterer J (2018) Geodaten für prädiktive und präskriptive Analysen—Ergebnisse aus dem Projekt BigGIS. In: Czarnecki C (ed) Workshops Der Informatik 2018, lecture notes in informatics (LNI). Gesellschaft für Informatik, Bonn

    Google Scholar 

  • Agrostis (2017) Integrated farm management application – Agrostis. Retrieved from https://ifarma.agrostis.gr/index_en.php

  • Atzori L, Iera A, Morabito G (2017) Understanding the internet of things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Netw 56:122–140

    Article  Google Scholar 

  • BigGIS – Scalable GIS for predictive and prescriptive analytics. Retrieved April 21, 2020, from http://biggis-project.eu/biggis-docs/

  • Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. In: MCC’12 – Proceedings of the 1st ACM Mobile Cloud Computing Workshop. ACM Press, New York, pp 13–15

    Google Scholar 

  • Borgia E (2014) The internet of things vision: key features, applications and open issues. Comput Commun 54:1–31

    Article  Google Scholar 

  • Carolan M (2015) Publicising food: big data, precision agriculture, and co-experimental techniques of addition. Sociol Rural 57(2):135–154

    Article  Google Scholar 

  • Dong X, Vuran MC, Irmak S (2013) Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems. Ad Hoc Netw 11(7):1975–1987

    Article  Google Scholar 

  • Duckett T, Pearson S, Blackmore S, Grieve B, Chen WH, Cielniak G, Cleaversmith J, Dai J, Davis S, Fox C, From P, Georgilas I, Gill R, Gould I, Hanheide M, Hunter A, Iida F, Mihalyova L, Nefti-Meziani S, Yang GZ (2018) Agricultural robotics: the future of robotic agriculture. Retrieved from https://arxiv.org/abs/1806.06762

  • Ferrández-Pastor F, García-Chamizo J, Nieto-Hidalgo M, Mora-Martínez J (2018) Precision agriculture design method using a distributed computing architecture on internet of things context. Sensors 18:1731

    Article  PubMed Central  Google Scholar 

  • FI-PPP (2011) Future Internet Public-Private Partnership. Retrieved April 20, 2020, from https://www.fi-ppp.eu/

  • Fountas S, Carli G, Sørensen CG, Tsiropoulos Z, Cavalaris C, Vatsanidou A, Liakos B, Canavari M, Wiebensohn J, Tisserye B (2015) Farm management information systems: current situation and future perspectives. Comput Electron Agric 115:40–50

    Article  Google Scholar 

  • Fuller JR (2016) How to design an IoT-ready infrastructure: the 4-stage architecture. Retrieved September 11, 2018, from https://techbeacon.com/4-stages-iot-architecture

  • Granell C, Havlik D, Schade S, Sabeur Z, Delaney C, Pielorz J, Usländer T, Mazzetti P, Schleidt K, Kobernus M, Havlik F, Bodsberg NR, Berre A, Mon JL (2016) Future internet technologies for environmental applications. Environ Model Softw 78:1–15

    Article  Google Scholar 

  • Haladjian J, Haug J, Nüske S, Bruegge B, Haladjian J, Haug J, Nüske S, Bruegge B (2018) A wearable sensor system for lameness detection in dairy cattle. Multimodal Technol Interaction 2(2):27

    Article  Google Scholar 

  • ISO (2015) ISO 11783-10:2015 Tractors and machinery for agriculture and forestry—Serial control and communications data network—Part 10: task controller and management information system data interchange. Retrieved from https://www.iso.org/standard/61581.html

  • Jan B, Farman H, Khan M, Imran M, Islam IU, Ahmad A, Ali S, Jeon G (2017) Deep learning in big data analytics: a comparative study. Comput Electr Eng 75:275–297

    Article  Google Scholar 

  • Jawad H, Nordin R, Gharghan S, Jawad A, Ismail M (2017) Energy-efficient wireless sensor networks for precision agriculture: a review. Sensors 17:1781

    Article  PubMed Central  Google Scholar 

  • Karmas A, Tzotsos A, Karantzalos K (2016) Geospatial big data for environmental and agricultural applications. In: Yu S, Guo S (eds) Big data concepts, theories, and applications. Springer, Cham, pp 353–390

    Chapter  Google Scholar 

  • Kortenbruck D, Griepentrog HW, Paraforos DS (2017) Machine operation profiles generated from ISO 11783 communication data. Comput Electron Agric 140:227–236

    Article  Google Scholar 

  • Kunisch M (2016) Big data in agriculture—perspectives for a service organisation. Landtechnik 71(1):1–3

    Google Scholar 

  • Lee J-G, Kang M (2015) Geospatial big data: challenges and opportunities. Big Data Res 2:74–81

    Article  Google Scholar 

  • Li S, Dragicevic S, Castro FA, Sester M, Winter S, Coltekin A, Pettit C, Jiang B, Haworth J, Stein A, Cheng T (2016) Geospatial big data handling theory and methods: a review and research challenges. ISPRS J Photogramm Remote Sens 115:119–133

    Article  Google Scholar 

  • Lokers R, Knapen R, Janssen S, van Randen Y, Jansen J (2016) Analysis of big data technologies for use in agro-environmental science. Environ Model Softw 84:494–504

    Article  Google Scholar 

  • Moysiadis V, Sarigiannidis P, Moscholios I (2018) Towards distributed data management in fog computing. Wirel Commun Mob Comput 2018:1–14

    Article  Google Scholar 

  • O’Grady MJ, Langton D, O’Hare GMP (2019) Edge computing: a tractable model for smart agriculture? Artif Intell Agric 3:42–51

    Google Scholar 

  • Paraforos DS, Vassiliadis V, Kortenbruck D, Stamkopoulos K, Ziogas V, Sapounas AA, Griepentrog HW (2016) A farm management information system using future internet technologies. IFAC-PapersOnLine 49:324–329

    Article  Google Scholar 

  • Paraforos DS, Reutemann M, Sharipov G, Werner R, Griepentrog HW (2017a) Total station data assessment using an industrial robotic arm for dynamic 3D in-field positioning with sub-centimetre accuracy. Comput Electron Agric 136:166–175

    Article  Google Scholar 

  • Paraforos DS, Vassiliadis V, Kortenbruck D, Stamkopoulos K, Ziogas V, Sapounas AA, Griepentrog HW (2017b) Automating the process of importing data into an FMIS using information from tractor’s CAN-bus communication. Adv Anim Biosci 8:650–655

    Article  Google Scholar 

  • Paraforos DS, Vassiliadis V, Kortenbruck D, Stamkopoulos K, Ziogas V, Sapounas AA, Griepentrog HW (2017c) Multi-level automation of farm management information systems. Comput Electron Agric 142:504–514

    Article  Google Scholar 

  • Paraforos DS, Sharipov GM, Griepentrog HW (2019) ISO 11783-compatible industrial sensor and control systems and related research: a review. Comput Electron Agric 163:104863

    Article  Google Scholar 

  • Popović T, Latinović N, Pešić A, Zečević Ž, Krstajić B, Djukanović S (2017) Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: a case study. Comput Electron Agric 140:255–265

    Article  Google Scholar 

  • Porter JR, Xie L, Challinor AJ, Cochrane K, Howden SM, Iqbal MM, Lobell DB, Travasso MI. 2014. Food security and food production systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL, (Eds.). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 485–533

    Google Scholar 

  • Ray PP (2016) A survey of IoT cloud platforms. Future Comput Inf J 1(1–2):35–46

    Article  Google Scholar 

  • Reiser D, Paraforos DS, Khan MT, Griepentrog HW, Vázquez-Arellano M (2017) Autonomous field navigation, data acquisition and node location in wireless sensor networks. Precis Agric 18:279–292

    Article  Google Scholar 

  • Saiz-Rubio V, Rovira-Más F (2020) From smart farming towards agriculture 5.0: a review on crop data management. Agronomy 10:207

    Article  Google Scholar 

  • Schluse M, Priggemeyer M, Atorf L, Rossmann J (2018) Experimentable digital twins—streamlining simulation-based systems engineering for industry 4.0. IEEE Trans Ind Inf 14:1722–1731

    Article  Google Scholar 

  • Sharipov G, Paraforos DS, Pulatov A, Griepentrog HW (2017) Dynamic performance of a no-till seeding assembly. Biosyst Eng 158:64–75

    Article  Google Scholar 

  • Sharipov GM, Paraforos DS, Griepentrog HW (2018) Implementation of a magnetorheological damper on a no-till seeding assembly for optimising seeding depth. Comput Electron Agric 150:465–475

    Article  Google Scholar 

  • Silwal A, Davidson JR, Karkee M, Mo C, Zhang Q, Lewis K (2017) Design, integration, and field evaluation of a robotic apple harvester. J Field Rob 34:1140–1159

    Article  Google Scholar 

  • Sreekantha DK, Kavya AM (2017) Agricultural crop monitoring using IOT – a study. In: 2017 11th International Conference on Intelligent Systems and Control (ISCO). IEEE, Coimbatore, pp 134–139

    Chapter  Google Scholar 

  • Stergiou C, Psannis KE, Kim B-G, Gupta B (2018) Secure integration of IoT and cloud computing. Futur Gener Comput Syst 78:964–975

    Article  Google Scholar 

  • Strube G (1998) Modelling motivation and action control in cognitive systems. In: Schmid U, Krems J, Wysocki F (eds) Mind modelling. Pabst, Berlin, pp 89–108

    Google Scholar 

  • Symeonaki E, Arvanitis K, Piromalis D (2017) Review on the trends and challenges of cloud computing technology in climate—smart agriculture. CEUR Work Proc 2030:66–78

    Google Scholar 

  • Talavera JM, Tobón LE, Gómez JA, Culman MA, Aranda JM, Parra DT, Quiroz LA, Hoyos A, Garreta LE (2017) Review of IoT applications in agro-industrial and environmental fields. Comput Electron Agric 142:283–297

    Article  Google Scholar 

  • The open source platform for our smart digital future – FIWARE. Retrieved April 20, 2020, from https://www.fiware.org/

  • Tzounis A, Katsoulas N, Bartzanas T, Kittas C (2017) Internet of things in agriculture, recent advances and future challenges. Biosyst Eng 164:31–48

    Article  Google Scholar 

  • United Nations (2015) Sustainable development knowledge platform. Retrieved April 20, 2020, from https://sustainabledevelopment.un.org/

  • Vannieuwenborg F, Verbrugge S, Colle D (2017) Designing and evaluating a smart cow monitoring system from a techno-economic perspective. In: 2017 Internet of Things Business Models, Users, and Networks, Copenhagen, Denmark, 2017, pp. 1-8, https://doi.org/10.1109/CTTE.2017.8260982

  • Varghese B, Buyya R (2018) Next generation cloud computing: new trends and research directions. Futur Gener Comput Syst 79:849–861

    Article  Google Scholar 

  • Vasconez JP, Kantor GA, Auat Cheein FA (2019) Human–robot interaction in agriculture: a survey and current challenges. Biosyst Eng 179:35–48

    Article  Google Scholar 

  • Vázquez-Arellano M, Paraforos DS, Reiser D, Garrido-Izard M, Griepentrog HW (2018a) Determination of stem position and height of reconstructed maize plants using a time-of-flight camera. Comput Electron Agric 154:276–288

    Article  Google Scholar 

  • Vázquez-Arellano M, Reiser D, Paraforos DS, Garrido-Izard M, Burce MEC, Griepentrog HW (2018b) 3-D reconstruction of maize plants using a time-of-flight camera. Comput Electron Agric 145:235–247

    Article  Google Scholar 

  • Villa-Henriksen A, Edwards GTC, Pesonen LA, Green O, Sørensen CAG (2020) Internet of things in arable farming: implementation, applications, challenges and potential. Biosyst Eng 191:60–84

    Article  Google Scholar 

  • Whitacre BE, Mark TB, Griffin TW (2014) How connected are our farms? Choices 29(3):1

    Google Scholar 

  • Wu X, Aravecchia S, Lottes P, Stachniss C, Pradalier C (2020) Robotic weed control using automated weed and crop classification. J Field Rob 37:322–340

    Article  Google Scholar 

  • Zhang Q, Yang LT, Chen Z, Li P (2018) A survey on deep learning for big data. Inf Fusion 42:146–157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios S. Paraforos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paraforos, D.S., Griepentrog, H.W. (2021). Digital Farming and Field Robotics: Internet of Things, Cloud Computing, and Big Data. In: Karkee, M., Zhang, Q. (eds) Fundamentals of Agricultural and Field Robotics. Agriculture Automation and Control. Springer, Cham. https://doi.org/10.1007/978-3-030-70400-1_14

Download citation

Publish with us

Policies and ethics