Skip to main content

From Data and Models to Decision Support Systems: Lessons and Advice for the Future

  • Chapter
  • First Online:
EURO Working Group on DSS

Part of the book series: Integrated Series in Information Systems ((ISIS))

Abstract

Model-based Decision Support Systems (DSSs) employ various types of models, such as statistical, optimization, simulation, or rule-based. Models are used to assess and analyze the given decision situation, and on this basis advise the decision-maker. Generally, the DSS development process involves three steps: (1) model development, (2) implementing the model(s) in a DSS, and (3) using the DSS. In this chapter, we focus on two model development approaches: Data Mining and Expert Modeling. We advocate for combing the two in order to get better models and better DSSs in general. We illustrate some points and potential pitfalls using an example of the PD_manager DSS, which is aimed at supporting medication change decisions in the management of Parkinson’s disease. Based on the experience from PD_manager and some other DSS development projects, we propose the so-called 5C requirements for better DSS models: correctness, completeness, consistency, comprehensibility, and convenience. Finally, we summarize the lessons learned and give advice to DSS developers and researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Please see http://kt.ijs.si/MarkoBohanec/mare.html for more information about these projects.

  2. 2.

    See, for example, https://www.softwaretestinghelp.com/data-mining-tools/.

  3. 3.

    https://www.capterra.com/decision-support-software/, http://kt.ijs.si/MarkoBohanec/dss.html, https://www.mcdmsociety.org/content/software-related-mcdm.

  4. 4.

    https://www.decision-deck.org/project/.

References

  1. Power, D. J. (2013). Decision support, analytics, and business intelligence (2nd ed.). New York: Business Expert Press.

    Google Scholar 

  2. Bohanec, M., Rajkovič, V., Bratko, I., Zupan, B., & Žnidaršič, M. (2013). DEX methodology: Three decades of qualitative multi-attribute modelling. Informatica, 37, 49–54.

    Google Scholar 

  3. Trdin, N., & Bohanec, M. (2018). Extending the multi-criteria decision making method DEX with numeric attributes, value distributions and relational models. Central European Journal of Operations Research, 26, 1–41.

    Article  Google Scholar 

  4. Bohanec, M. (2020). DEXi: Program for multi-attribute decision making, user’s manual, version 5.04. IJS Report DP-13100. Ljubljana: Jožef Stefan Institute. Software retrieved from: http://kt.ijs.si/MarkoBohanec/dexi.html.

    Google Scholar 

  5. Albright, S. C., & Winston, W. L. (2016). Business analytics: data analysis & decision making (6th ed.). Boston: Cengage Learning.

    Google Scholar 

  6. Hastie, T., Tibshirani, R., & Friedman, J. (2016). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Berlin: Springer Series in Statistics.

    Google Scholar 

  7. Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2017). Data mining: Practical machine learning tools and techniques (4th ed.). Amsterdam: Elsevier.

    Google Scholar 

  8. Kidd, A. (1987). Knowledge acquisition for expert systems: A practical handbook. University Series in Mathematics. New York: Springer.

    Book  Google Scholar 

  9. Lavrač, N., & Bohanec, M. (2003). Integration of data mining and decision support. Data mining and decision support: Integration and collaboration (pp. 37–48). Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  10. PD_manager. (2015–2018): mHealth platform for Parkinson’s disease management. EU Horizon 2020 Project H2020-PHC-643706. Retrieved from http://www.parkinson-manager.eu/.

  11. Tsiouris, K. M., Gatsios, D., Rigas, G., Miljković, D., Koroušić-Seljak, B., Bohanec, M., Arredondo, M. T., Antonini, A., Konitsiotis, S., Koutsouris, D. D., & Fotiadis, D. I. (2017). PD_manager: An mHealth platform for Parkinson’s disease patient management. Healthcare Technology Letters, 4(3), 102–108.

    Article  Google Scholar 

  12. Mileva Boshkoska, B., Miljković, D., Valmarska, A., Gatsios, D., Rigas, G., Konitsiotis, S., Tsiouris, K. M., Fotiadis, D., & Bohanec, M. (2020). Decision support for medication change of Parkinson’s Disease Patients. Computer Methods and Programs in Biomedicine, 196, 105552.

    Article  Google Scholar 

  13. Bohanec, M., Miljković, D., Valmarska, A., Mileva Boshkoska, B., Gasparoli, E., Gentile, G., Koutsikos, K., Marcante, A., Antonini, A., Gatsios, D., Rigas, F., Fotiadis, D. I., Tsiouris, K. M., & Konitsiotis, S. (2018). A decision support system for Parkinson disease management: Expert models for suggesting medication change. Journal of Decision Systems, 27, 164–172.

    Article  Google Scholar 

  14. PPMI. (2011). Parkinson progression marker initiative: The Parkinson progression marker initiative. Progress in Neurobiology, 95(4), 629–635.

    Article  Google Scholar 

  15. Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., Možina, M., Polajnar, M., Toplak, M., Starič, A., Stajdohar, M., Umek, L., Žagar, L., Žbontar, J., Žitnik, M., & Zupan, B. (2013). Orange: Data mining toolbox in Python. Journal of Machine Learning Research, 14(1), 2349–2353.

    Google Scholar 

  16. Kranjc, J., Orač, R., Podpečan, V., Lavrač, N., & Robnik-Šikonja, M. (2017). ClowdFlows: Online workflows for distributed big data mining. Future Generation Computer Systems, 68, 38–58.

    Article  Google Scholar 

  17. Bohanec, M., & Delibašić, B. (2015). Data-mining and expert models for predicting injury risk in ski resorts. In Decision support systems V—Big data analytics for decision making. First International Conference ICDSST 2015 (pp. 46–60). Berlin: Springer.

    Chapter  Google Scholar 

  18. Bohanec, M., Messéan, A., Angevin, F., & Žnidaršič, M. (2006). SMAC advisor: A decision-support tool on coexistence of genetically-modified and conventional maize (pp. 9–12). Ljubljana: Proc. Information Society IS 2006.

    Google Scholar 

  19. García-Lapresta, J. L., & Montero, J. (2006). Consistency in preference modelling. In B. Bouchon-Meunier, G. Coletti, & R. Yager (Eds.), Modern information processing: From theory to applications (pp. 87–97). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  20. Parmigiani, G., & Inoue, L. Y. T. (2009). Decision theory: Principles and approaches. Chicester: Wiley.

    Book  Google Scholar 

  21. Steele, K., & Stefánsson, H. O. (2016). Decision theory. In Z. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2016). Stanford: Stanford University.

    Google Scholar 

  22. Greco, S., Ehrgott, M., & Figueira, J. (2016). Multi criteria decision analysis: State of the art surveys. New York: Springer Verlag.

    Book  Google Scholar 

  23. Kadziński, M., Słowiński, R., & Szeląg, M. (2016). Dominance-based rough set approach to multiple criteria ranking with sorting-specific preference information. In S. Matwin & J. Mielniczuk (Eds.), Challenges in computational statistics and data mining (pp. 155–171). New York: Springer.

    Chapter  Google Scholar 

  24. Greco, S., Matarazzo, B., & Slowinski, R. (2002). Rough sets methodology for sorting problems in presence of multiple attributes and criteria. European Journal of Operational Research, 138(2), 247–259.

    Article  Google Scholar 

  25. Denat, T., & Öztürk, M. (2017). Dominance based monte carlo algorithm for preference elicitation in the multi-criteria sorting problem: Some performance tests. In J. Rothe (Ed.), Algorithmic decision theory (Lecture Notes in Computer Science) (Vol. 10576). Cham: Springer.

    Chapter  Google Scholar 

  26. Moshkovich, H. M., & Mechitov, A. I. (2013). Verbal decision analysis: Foundations and trends. Adv. Decis. Sci., 2013, 1–9.

    Google Scholar 

  27. Ben-David, A. (1995). Monotonicity maintenance in information-theoretic machine learning algorithms. Machine Learning, 19(1), 29–43.

    Article  Google Scholar 

  28. Cao-Van, K., & De Baets, B. (2003). Growing decision trees in an ordinal setting. International Journal of Intelligent Systems, 18(7), 733–750.

    Article  Google Scholar 

  29. Potharst, R., & Feelders, A. J. (2002). Classification trees for problems with monotonicity constraints. ACM SIGKDD Explorations Newsletter, 4(1), 1.

    Article  Google Scholar 

  30. Błaszczyński, J., Słowiński, R., & Szeląg, M. (2011). Sequential covering rule induction algorithm for variable consistency rough set approaches. Information Sciences, 181(5), 987–1002.

    Article  Google Scholar 

  31. Kotłowski, W., & Słowiński, R. (2014). Rule learning with monotonicity constraints. In Proceedings of the 26th Annual International Conference on Machine Learning (Vol. 2009, pp. 537–544). New York: ACM.

    Google Scholar 

  32. Moshkovich, H. M., Mechitov, A. I., & Olson, D. L. (2002). Rule induction in data mining: Effect of ordinal scales. Expert Systems with Applications, 22(4), 303–311.

    Article  Google Scholar 

  33. Michie, D., & Bratko, I. (1986). Expert systems: Automating knowledge acquisition. Boston: Addison-Wesley.

    Google Scholar 

  34. Muggleton, S. H., Schmid, U., Zeller, C., Tamaddoni-Nezhad, A., & Besold, T. (2018). Ultra-strong machine learning: Comprehensibility of programs learned with ILP. Machine Learning, 107(7), 1119–11140.

    Article  Google Scholar 

  35. AI HLEG. (2019). Ethics guidelines for trustworthy AI. High-level expert group on artificial intelligence. Brussels: European Commission. Retrieved from https://ec.europa.eu/futurium/en/ai-alliance-consultation.

    Google Scholar 

  36. Piltaver, R., Luštrek, M., Gams, M., & Martinčić-Ipšić, S. (2016). What makes classification trees comprehensible? Expert Systems with Applications, 62, 333–346.

    Article  Google Scholar 

  37. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM Computing Surveys, 51(5), 1–42.

    Article  Google Scholar 

  38. Felici, M. (2012). How to trust: A model for trust decision making. International Journal of Adaptive, Resilient and Autonomic Systems, 3(3), 20–34.

    Article  Google Scholar 

  39. Gleicher, M. (2016). A framework for considering comprehensibility in modeling. Big Data, 4(2), 75–88.

    Article  Google Scholar 

  40. Meyer, P., & Bigaret, S. (2012). Diviz: A software for modeling, processing and sharing algorithmic workflows in MCDA. Intelligent Decision Technologies, 6(4), 283–296.

    Article  Google Scholar 

  41. Bigaret, S., & Meyer, P. (2015). XMCDA: An XML-based encoding standard for MCDA data. In R. Bisdorff, L. C. Dias, P. Meyer, V. Mousseau, & M. Pirlot (Eds.), Evaluation and decision models with multiple criteria: Case studies (pp. 591–617). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  42. Ishizaka, A., & Nemery, P. (2013). Multi-criteria decision analysis: Methods and software. Chichester: Wiley.

    Book  Google Scholar 

Download references

Acknowledgments

The author acknowledges the financial support from the Slovenian Research Agency, research core funding P2-0103. The PD_manager project was funded within the EU Framework Programme for Research and Innovation Horizon 2020, under grant number 643706. Data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-info.org/data). For up-to-date information on the study, visit www.ppmi-info.org. PPMI—a public–private partnership—is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including Abbvie, Allergan, Amathus, Avid, Biogen, BioLegend, Bristol-Myers Squibb, Celgene, Jenali, GE Healthcare, Genentech, GlaxoSmithKline, Janssen Neuroscience, Lilly, Lundbeck, Merck, MSD, Pfizer, Piramal, Prevail, Roche, Sanofy Genzyme, Servier, Takeda, Teva, UCB, Verily, and Voyager.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Bohanec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bohanec, M. (2021). From Data and Models to Decision Support Systems: Lessons and Advice for the Future. In: Papathanasiou, J., Zaraté, P., Freire de Sousa, J. (eds) EURO Working Group on DSS. Integrated Series in Information Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-70377-6_11

Download citation

Publish with us

Policies and ethics