Abstract
The Covid-19 pandemic is a reminder that modern society is still susceptible to multiple types of natural or man-made disasters, which motivates the need to improve resiliency through technological advancement. This article focuses on robotics and the role it can play towards providing resiliency to disasters. The progress in this domain brings the promise of effectively deploying robots in response to life-threatening disasters, which includes highly unstructured setups and hazardous spaces inaccessible or harmful to humans. This article discusses the maturity of robotics technology and explores the needed advances that will allow robots to become more capable and robust in disaster response measures. It also explores how robots can help in making human and natural environments preemptively more resilient without compromising long-term prospects for economic development. Despite its promise, there are also concerns that arise from the deployment of robots. Those discussed relate to safety considerations, privacy infringement, cyber-security, and financial aspects, such as the cost of development and maintenance as well as impact on employment.
Keywords
- Resiliency
- Disasters
- Robotics
This is a preview of subscription content, access via your institution.
Buying options





References
Amazon Robotics. https://www.amazonrobotics.com/#/
Assembly Robots. https://www.robots.com/applications/robotic-assembly
BostonDynamics: ATLAS. https://www.bostondynamics.com/atlas
Built Robotics. https://www.builtrobotics.com/
DroneDeploy: Drones in Agriculture, Then and Now. https://medium.com/aerial-acuity/drones-in-agriculture-then-and-now-ebde3df01667
Euronews: Farmers use drones to fight drought. https://www.euronews.com/2016/09/12/farmers-use-drones-to-fight-drought
GeekPlus Robotics. https://www.geekplus.com/
Insight Robotics. https://www.insightrobotics.com/en/
Occupational Safety and Health Administration: Robot-related Accident. https://www.osha.gov/
RDI Technologies. https://rditechnologies.com/
Wiki: Hurricane Rita. https://en.wikipedia.org/wiki/Hurricane_Rita
Wiki: Technology readiness level. https://en.wikipedia.org/wiki/Technology_readiness_level
World Disasters Timeline. http://www.mapreport.com/disasters.html
BBC News: Robotic surgery linked to 144 deaths in the US (2015). https://www.bbc.com/news/technology-33609495
Two Billion People Hit by Natural Disasters in the Past Decade (2018). https://www.securitymagazine.com/articles/89535-two-billion-people-hit-by-natural-disasters-in-the-past-decade
Robots’ to replace up to 20 million factory jobs’ by 2030 (2019). https://www.bbc.com/news/business-48760799
Self-Driving Cars-facts and Figures (2020). https://www.driverlessguru.com/self-driving-cars-facts-and-figures
(ACLU), A.C.L.U.: Protecting privacy from aerial surveillance: Recommendations for government use of drone aircraft (2011). https://www.aclu.org/files/assets/protectingprivacyfromaerialsurveillance.pdf
Afghah, F., Razi, A., Chakareski, J., Ashdown, J.: Wildfire monitoring in remote areas using autonomous unmanned aerial vehicles. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 835–840. IEEE (2019)
Afzaal, H., Zafar, N.A.: Robot-based forest fire detection and extinguishing model. In: 2016 2nd International Conference on Robotics and Artificial Intelligence (ICRAI), pp. 112–117. IEEE (2016)
Ahmadi, M., Stone, P.: A multi-robot system for continuous area sweeping tasks. In: Proceedings 2006 IEEE International Conference on Robotics and Automation. ICRA 2006, pp. 1724–1729. IEEE (2006)
Anderson, M.: Surprise! 2020 Is Not the Year for Self-Driving Cars (2020). https://spectrum.ieee.org/transportation/self-driving/surprise-2020-is-not-the-year-for-selfdriving-cars
Army, T.U.: iRobot PackBot (2009). https://commons.wikimedia.org/wiki/File:Flickr_-_The_U.S._Army_-_iRobot_PackBot.jpg
Bao, D.Q., Zelinka, I.: Obstacle avoidance for swarm robot based on self-organizing migrating algorithm. Procedia Comput. Sci. 150, 425–432 (2019)
Becker, R.: Robot squeezes suspected nuclear fuel debris in Fukushima reactor (2019). https://www.theverge.com/2019/2/15/18225233/robot-nuclear-fuel-debris-fukushima-reactor-japan
Bhagavatula, S.: Robots are getting expensive (2019). https://medium.com/datadriveninvestor/automation-is-getting-expensive-1a4656b1bd9a
Bischoff, R., Huggenberger, U., Prassler, E.: Kuka youbot-a mobile manipulator for research and education. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1–4. IEEE (2011)
Bliss, L.: Could Self-Driving Cars Speed Hurricane Evacuations? (2016). https://www.theatlantic.com/technology/archive/2016/10/self-driving-cars-evacuations/504131/
Burke, R.V., et al.: Using robotic telecommunications to triage pediatric disaster victims. J. Pediatr. Surg. 47(1), 221–224 (2012)
Burmeister, S., Holz, M.: Warning method and robot system, US Patent 9,908,244, March 6 2018
Chen, X., Zhang, H., Lu, H., Xiao, J., Qiu, Q., Li, Y.: Robust slam system based on monocular vision and lidar for robotic urban search and rescue. In: 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), pp. 41–47. IEEE (2017)
Coyle, S., Majidi, C., LeDuc, P., Hsia, K.J.: Bio-inspired soft robotics: material selection, actuation, and design. Extrem. Mech. Lett. 22, 51–59 (2018)
Crozier, S.: Forest Fire “Clear Cut” Robot (2008). https://www.yankodesign.com/2008/04/24/forest-fire-clear-cut-robot/
Customs, U., Protection, B.: CBP Officers deploy underwater robot below a ship (2012). https://commons.wikimedia.org/wiki/File:CBP_Officers_deploy_underwater_robot_below_a_ship_(8405583933).jpg
Deierling, K.: The End of Moore’s Law and the Return of Cleverness (2019). https://blog.mellanox.com/2019/08/the-end-of-moores-law-and-the-return-of-cleverness
D’Monte, L.: 5 Robots That May Rescue You From Natural Disasters (2015). https://www.govtech.com/em/safety/5-Robots-That-May-Rescue-You-From-Natural-Disasters.html
Dockterman, E.: Robot Kills Man at Volkswagen Plant (2015). https://time.com/3944181/robot-kills-man-volkswagen-plant/
Doersch, C., Zisserman, A.: Sim2real transfer learning for 3D human pose estimation: motion to the rescue. In: Advances in Neural Information Processing Systems, pp. 12949–12961 (2019)
Dunbabin, M., Grinham, A., Udy, J.: An autonomous surface vehicle for water quality monitoring. In: Australasian Conference on Robotics and Automation (ACRA), pp. 2–4. Citeseer (2009)
Ellekilde, L.P., Petersen, H.G.: Motion planning efficient trajectories for industrial bin-picking. Int. J. Robot. Res. 32(9–10), 991–1004 (2013)
Ess, A., Schindler, K., Leibe, B., Van Gool, L.: Object detection and tracking for autonomous navigation in dynamic environments. Int. J. Robot. Res. 29(14), 1707–1725 (2010)
Fallon, P.J.: Acoustical/optical bin picking system, US Patent 4,985,846, January 15 1991
Feng, S.W., Yu, J.: Optimally guarding perimeters and regions with mobile range sensors. arXiv preprint arXiv:2002.08477 (2020)
Foster, M.E., By, T., Rickert, M., Knoll, A.: Human-robot dialogue for joint construction tasks. In: Proceedings of the 8th International Conference on Multimodal Interfaces, pp. 68–71 (2006)
Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013)
Garrett, C.R., Huang, Y., Lozano-Pérez, T., Mueller, C.T.: Scalable and probabilistically complete planning for robotic spatial extrusion. arXiv preprint arXiv:2002.02360 (2020)
Gonzalez, C.: Changing the Future of Warehouses with Amazon Robots (2017). https://www.machinedesign.com/mechanical-motion-systems/article/21835788/changing-the-future-of-warehouses-with-amazon-robots
González-Jiménez, H.: Can robots help us overcome the coronavirus health crisis and lockdown? (2020). https://theconversation.com/can-robots-help-us-overcome-the-coronavirus-health-crisis-and-lockdown-134161
Gow, G.: COVID-19 and unemployment: the robots are coming (2020). https://www.forbes.com/sites/glenngow/2020/07/07/covid-19-and-unemployment-the-robots-are-coming/?sh=225497141fab
Han, S.D., Yu, J.: DDM: fast near-optimal multi-robot path planning using diversified-path and optimal sub-problem solution database heuristics. IEEE Robot. Autom. Lett. 5(2), 1350–1357 (2020)
Hanheide, M., et al.: Robot task planning and explanation in open and uncertain worlds. Artif. Intell. 247, 119–150 (2017)
Hecht, J.: Self-driving vehicles: many challenges remain for autonomous navigation (2020). https://www.laserfocusworld.com/test-measurement/article/14169619/selfdriving-vehicles-many-challenges-remain-for-autonomous-navigation
Hellström, T.: On the moral responsibility of military robots. Ethics Inf. Technol. 15(2), 99–107 (2013)
Hereid, A., Cousineau, E.A., Hubicki, C.M., Ames, A.D.: 3D dynamic walking with underactuated humanoid robots: a direct collocation framework for optimizing hybrid zero dynamics. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1447–1454. IEEE (2016)
Husseini, T.: From Cherno-bots to Iron Man suits: the development of nuclear waste robotics. https://www.power-technology.com/features/cleaning-up-nuclear-waste-robotics/
Islam, F., Salzman, O., Agraval, A., Likhachev, M.: Provably constant-time planning and re-planning for real-time grasping objects off a conveyor. arXiv preprint arXiv:2003.08517 (2020)
Kapoutsis, A.C., Chatzichristofis, S.A., Kosmatopoulos, E.B.: DARP: divide areas algorithm for optimal multi-robot coverage path planning. J. Intell. Robot. Syst. 86(3–4), 663–680 (2017)
Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal motion planning. Robot. Sci. Syst. VI 104(2), 267–274 (2010)
Kerzel, M., Strahl, E., Magg, S., Navarro-Guerrero, N., Heinrich, S., Wermter, S.: Nico–neuro-inspired companion: a developmental humanoid robot platform for multimodal interaction. In: 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 113–120. IEEE (2017)
Khalid, M.A.B., Shome, R., Stone, C.M.K.B.M.: That and there: judging the intent of pointing actions with robotic arms (2019)
King, J.E., Haustein, J.A., Srinivasa, S.S., Asfour, T.: Nonprehensile whole arm rearrangement planning on physics manifolds. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2508–2515. IEEE (2015)
Koceska, N., Koceski, S., Beomonte Zobel, P., Trajkovik, V., Garcia, N.: A telemedicine robot system for assisted and independent living. Sensors 19(4), 834 (2019)
Kroemer, O., Niekum, S., Konidaris, G.: A review of robot learning for manipulation: challenges, representations, and algorithms. arXiv preprint arXiv:1907.03146 (2019)
Krontiris, A., Bekris, K.E.: Efficiently solving general rearrangement tasks: a fast extension primitive for an incremental sampling-based planner. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 3924–3931. IEEE (2016)
Kulik, S.D., Shtanko, A.N.: Experiments with neural net object detection system YOLO on small training datasets for intelligent robotics. In: Misyurin, S.Y., Arakelian, V., Avetisyan, A.I. (eds.) Advanced Technologies in Robotics and Intelligent Systems. MMS, vol. 80, pp. 157–162. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33491-8_19
LaMonica, M.: Ocean-faring Robot Cashes in on Offshore Oil and Gas (2013). https://www.technologyreview.com/2013/03/20/253500/ocean-faring-robot-cashes-in-on-offshore-oil-and-gas/
Lavalle, S.M.: Sampling-based motion planning (2006)
Lavine, K.: Take3: Left Hand Robotics creates snow-clearing robot (Video) (2018). https://www.bizjournals.com/denver/news/2018/01/02/take3-left-hand-robotics-creates-snow-clearing.html
Levinson, J., Thrun, S.: Robust vehicle localization in urban environments using probabilistic maps. In: 2010 IEEE International Conference on Robotics and Automation, pp. 4372–4378. IEEE (2010)
Li, X., Guo, D., Yin, H., Wei, G.: Drone-assisted public safety wireless broadband network. In: 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 323–328. IEEE (2015)
Lopez-Arreguin, A., Montenegro, S.: Towards bio-inspired robots for underground and surface exploration in planetary environments: an overview and novel developments inspired in sand-swimmers. Heliyon 6(6), e04148 (2020)
Lu, Q., Fricke, G.M., Tsuno, T., Moses, M.E.: A bio-inspired transportation network for scalable swarm foraging. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 6120–6126. IEEE (2020)
Luo, C., Espinosa, A.P., Pranantha, D., De Gloria, A.: Multi-robot search and rescue team. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 296–301. IEEE (2011)
Mandloi, A., Jaisingh, H.R., Hazarika, S.M.: Perception based navigation for autonomous ground vehicles. In: Deka, B., Maji, P., Mitra, S., Bhattacharyya, D.K., Bora, P.K., Pal, S.K. (eds.) PReMI 2019. LNCS, vol. 11942, pp. 369–376. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34872-4_41
Manjanna, S., Li, A.Q., Smith, R.N., Rekleitis, I., Dudek, G.: Heterogeneous multi-robot system for exploration and strategic water sampling. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–8. IEEE (2018)
Margaret Rouse, I.W.: Telepresence robot. https://searchenterpriseai.techtarget.com/definition/telepresence-robot
Meguro, J.I., Ishikawa, K., Hasizume, T., Takiguchi, J.I., Noda, I., Hatayama, M.: Disaster information collection into geographic information system using rescue robots. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3514–3520. IEEE (2006)
Michael Martinez, P.V., Hannah, J.: CNN: germ-zapping robot Gigi sets its sights on Ebola (2014). https://www.cnn.com/2014/10/16/us/germ-zapping-robot-ebola/index.html
Miller, N.: How factories change production to quickly fight coronavirus (2020). https://www.bbc.com/worklife/article/20200413-how-factories-change-production-to-quickly-fight-coronavirus
Mohney, G.: Long Search for Missing Plane Could Cost ‘Hundreds of Millions of Dollars’ (2014). https://abcnews.go.com/International/long-search-missing-plane-cost-hundreds-millions-dollars/story?id=22899690
NASA: Snakebot (2000). https://www.nasa.gov/centers/ames/news/releases/2000/00images/snakebot/snakebot.html
Nayyar, M., Wagner, A.R.: Effective robot evacuation strategies in emergencies. In: 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1–6. IEEE (2019)
Noha, S.Y., et al.: Design of a 2dofs pantograph leg mechanism for rapid response robot platform in nuclear power plant facilities (2020)
Onosato, M., et al.: Disaster information gathering aerial robot systems. In: Rescue Robotics, pp. 33–55. Springer (2009). https://doi.org/10.1007/978-1-84882-474-4_3
Palmer, A.: Amazon wins FAA approval for Prime Air drone delivery fleet (2020). https://www.cnbc.com/2020/08/31/amazon-prime-now-drone-delivery-fleet-gets-faa-approval.html
Pan, Q., Lowe, D.: Search and rescue robot team RF communication via power cable transmission line-a proposal. In: 2007 International Symposium on Signals, Systems and Electronics, pp. 287–290. IEEE (2007)
Panagou, D.: Motion planning and collision avoidance using navigation vector fields. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2513–2518. IEEE (2014)
Paraskevas, A., Arendell, B.: A strategic framework for terrorism prevention and mitigation in tourism destinations. Tourism Manag. 28(6), 1560–1573 (2007)
Paul, M.: Don’t Fear the Robots: Why Automation Doesn’t Mean the End of Work (2018). https://rooseveltinstitute.org/publications/dont-fear-the-robots-automation-doesnt-mean-the-end-of-work/
Pierson, A., Schwager, M.: Bio-inspired non-cooperative multi-robot herding. In: ICRA, pp. 1843–1849. Citeseer (2015)
Quaritsch, M., Kuschnig, R., Hellwagner, H., Rinner, B., Adria, A., Klagenfurt, U.: Fast aerial image acquisition and mosaicking for emergency response operations by collaborative UAVs. In: ISCRAM (2011)
Ramirez, V.B.: Waymo Just Started Testing Its Driverless Trucks in Texas (2020). https://singularityhub.com/2020/08/27/waymo-just-started-testing-its-driverless-trucks-in-texas/
Reich, J., Sklar, E.: Robot-sensor networks for search and rescue. In: IEEE International Workshop on Safety, Security and Rescue Robotics, vol. 22 (2006)
Reise, R.: POK Jupiter firefighting robot (2019). https://commons.wikimedia.org/wiki/File:POK_Jupiter_firefighting_robot_(3).jpg
Sadigh, D., Sastry, S., Seshia, S.A., Dragan, A.D.: Planning for autonomous cars that leverage effects on human actions. In: Robotics: Science and Systems, vol. 2. Ann Arbor (2016)
Semuels, A.: Millions of Americans Have Lost Jobs in the Pandemic – and Robots and AI are Replacing them Faster than Ever (2020). https://time.com/5876604/machines-jobs-coronavirus
Shaw, K.: World Robotics Report: Global Sales of Robots Hit \$16.5B in 2018 (2019). https://www.roboticsbusinessreview.com/research/world-robotics-report-global-sales-of-robots-hit-16-5b-in-2018/
Shi, S., Wu, H., Song, Y., Handroos, H.: Mechanical design and error prediction of a flexible manipulator system applied in nuclear fusion environment. Ind. Robot: Int. J. 44(6), 711–719 (2017)
Shome, R., Nakhimovich, D., Bekris, K.E.: Pushing the boundaries of asymptotic optimality in integrated task and motion planning. In: The 14th International Workshop on the Algorithmic Foundations of Robotics (2020)
Shome, R., et al.: Towards robust product packing with a minimalistic end-effector. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 9007–9013. IEEE (2019)
Simoni, M.D., Kutanoglu, E., Claudel, C.G.: Optimization and analysis of a robot-assisted last mile delivery system. Transp. Res. Part E: Logistics Transp. Rev. 142, 102049 (2020)
Ruiz-del Solar, J., Loncomilla, P., Soto, N.: A survey on deep learning methods for robot vision. arXiv preprint arXiv:1803.10862 (2018)
Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., Abbeel, P.: Combined task and motion planning through an extensible planner-independent interface layer. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 639–646. IEEE (2014)
Strisciuglio, N., et al.: Trimbot 2020: an outdoor robot for automatic gardening. In: ISR 2018 50th International Symposium on Robotics, pp. 1–6. VDE (2018)
Stuart, H., Wang, S., Khatib, O., Cutkosky, M.R.: The ocean one hands: an adaptive design for robust marine manipulation. Int. J. Robot. Res. 36(2), 150–166 (2017)
Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446–2454 (2020)
Sutter, J.D.: MIT unveils swimming, oil-cleaning robots (2010). http://edition.cnn.com/2010/TECH/innovation/08/26/mit.oil.robot/index.html
Tanimoto, T., Shinohara, K., Yoshinada, H.: Research on effective teleoperation of construction machinery fusing manual and automatic operation. ROBOMECH J. 4(1), 14 (2017)
Team, R.O.M.: Food Delivery Robots Take to the Streets (2019). https://www.robotics.org/blog-article.cfm/Food-Delivery-Robots-Take-to-the-Streets/212
Tuna, G., Gulez, K., Gungor, V.C.: Communication related design considerations of WSN-aided multi-robot slam. In: 2011 IEEE International Conference on Mechatronics, pp. 493–498. IEEE (2011)
Wakabayashi, D.: Self-Driving Uber Car Kills Pedestrian in Arizona, Where Robots Roam (2018). https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
Walker, J.: Military Robotics Innovation - Comparing the US to Other Major Powers (2019). https://emerj.com/ai-sector-overviews/military-robotics-innovation/
Wang, H., Zhang, C., Song, Y., Pang, B.: Master-followed multiple robots cooperation slam adapted to search and rescue environment. Int. J. Control. Autom. Syst. 16(6), 2593–2608 (2018)
Wang, R., Mitash, C., Lu, S., Boehm, D., Bekris, K.E.: Safe and effective picking paths in clutter given discrete distributions of object poses. arXiv preprint arXiv:2008.04465 (2020)
Wang, Y., Jordan, C.S., Hanrahan, K., Sanchez, D.S., Pinter, M.: Telepresence robot with a camera boom, US Patent 8,996,165, March 31 2015
Winder, D.: Is the future of cyber crime a nightmare scenario (2016). https://www.raconteur.net/is-future-cyber-crime-a-nightmare-scenario/
Wood, L.J., Zaraki, A., Walters, M.L., Novanda, O., Robins, B., Dautenhahn, K.: The iterative development of the humanoid robot kaspar: an assistive robot for children with autism. In: International Conference on Social Robotics, pp. 53–63. Springer (2017). https://doi.org/10.1007/978-3-319-70022-9_6
Yadron, D., Tynan, D.: Tesla driver dies in first fatal crash while using autopilot mode (2016). https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
Yamada, T., Ito, T., Ohya, A.: Detection of road surface damage using mobile robot equipped with 2D laser scanner. In: Proceedings of the 2013 IEEE/SICE International Symposium on System Integration, pp. 250–256. IEEE (2013)
Yamamoto, T., Terada, K., Ochiai, A., Saito, F., Asahara, Y., Murase, K.: Development of human support robot as the research platform of a domestic mobile manipulator. ROBOMECH J. 6(1), 4 (2019)
Yan, C., Xiang, X., Wang, C.: Towards real-time path planning through deep reinforcement learning for a UAV in dynamic environments. J. Intell. Robot. Syst. 1–13 (2019)
Yang, G.Z., et al.: Combating Covid-19–the role of robotics in managing public health and infectious diseases (2020)
Yatsuda, A., Haramaki, T., Nishino, H.: A robot gesture framework for watching and alerting the elderly. In: International Conference on Network-Based Information Systems, pp. 132–143. Springer (2018). https://doi.org/10.1007/978-3-319-98530-5_12
Yu, C., et al.: Ds-slam: A semantic visual slam towards dynamic environments. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1168–1174. IEEE (2018)
Yu, J., LaValle, S.M.: Optimal multirobot path planning on graphs: complete algorithms and effective heuristics. IEEE Trans. Robot. 32(5), 1163–1177 (2016)
Yuh, J., Marani, G., Blidberg, D.R.: Applications of marine robotic vehicles. Intell. Serv. Robot. 4(4), 221 (2011)
Zhang, S., Guo, Y.: Distributed multi-robot evacuation incorporating human behavior. Asian J. Control 17(1), 34–44 (2015)
Zheng, X., Jain, S., Koenig, S., Kempe, D.: Multi-robot forest coverage. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3852–3857. IEEE (2005)
Zhou, X.S., Roumeliotis, S.I.: Multi-robot slam with unknown initial correspondence: the robot rendezvous case. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1785–1792. IEEE (2006)
Acknowledgement
The authors would like to acknowledge the support of the NSF NRT award 2021628 and the NSF HDR TRIPODS 1934924.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Wang, R., Nakhimovich, D., Roberts, F.S., Bekris, K.E. (2021). Chapter 5 Robotics as an Enabler of Resiliency to Disasters: Promises and Pitfalls. In: Roberts, F.S., Sheremet, I.A. (eds) Resilience in the Digital Age. Lecture Notes in Computer Science(), vol 12660. Springer, Cham. https://doi.org/10.1007/978-3-030-70370-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-70370-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-70369-1
Online ISBN: 978-3-030-70370-7
eBook Packages: Computer ScienceComputer Science (R0)