Skip to main content

Photon Upconversion Based on Sensitized Triplet-Triplet Annihilation (sTTA) in Solids

  • Chapter
  • First Online:
Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells
  • 844 Accesses

Abstract

The conversion of low-energy photons into radiation of higher energy is useful for bioimaging, 3D displays and other applications. In particular, upconversion of the infrared portion of the solar spectrum, which is typically not absorbed by the light-harvesting materials used in solar technologies, allows additional photons to be harnessed and boosts the efficiency of photovoltaic and photocatalytic devices. Therefore, low power photon upconversion of non-coherent light based on sensitized triplet-triplet annihilation (sTTA) has been recently recognized as a potential viable approach towards enhancing the efficiency of sunlight-powered devices through sub-bandgap photon harvesting.

The sTTA permits the conversion of light into radiation of higher energy involving a sequence of photophysical processes between two moieties, respectively a light harvester/triplet sensitizer and an annihilator/emitter. High up-conversion yields under solar irradiance can be observed in low viscosity solutions of dyes, but in solid materials, which are better suited for integration in devices, the process is usually less efficient. The ability to control triplet excitons in the solid state is therefore crucial to obtain high performance solid upconverters. In this chapter, we will discuss the results obtained in several systems, such as dye-doped polymers/nanoparticles, amorphous/crystalline supramolecular structures and many others, highlighting the materials design guidelines to obtain efficient upconverters at the solid state that can match the strict requirements of solar technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda, G. Wegner, Up-conversion fluorescence: noncoherent excitation by sunlight. Phys. Rev. Lett. 97(14), 143903 (2006). https://doi.org/10.1103/PhysRevLett.97.143903

    Article  CAS  Google Scholar 

  2. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21(5), 836–850 (1953). https://doi.org/10.1063/1.1699044

    Article  CAS  Google Scholar 

  3. M. Inokuti, F. Hirayama, Influence of energy transfer by the exchange mechanism on donor luminescence. J. Chem. Phys. 43(6), 1978–1989 (1965). https://doi.org/10.1063/1.1697063

    Article  CAS  Google Scholar 

  4. A. Köhler, H. Bässler, What controls triplet exciton transfer in organic semiconductors? J. Mater. Chem. 21(12), 4003–4011 (2011). https://doi.org/10.1039/C0JM02886J

    Article  Google Scholar 

  5. R.C. Johnson, R.E. Merrifield, Effects of magnetic fields on the mutual annihilation of triplet excitons in anthracene crystals. Phys. Rev. B 1(2), 896–902 (1970). https://doi.org/10.1103/PhysRevB.1.896

    Article  Google Scholar 

  6. J. Mezyk, R. Tubino, A. Monguzzi, A. Mech, F. Meinardi, Effect of an external magnetic field on the up-conversion photoluminescence of organic films: the role of disorder in triplet-triplet annihilation. Phys. Rev. Lett. 102(8), 087404 (2009). https://doi.org/10.1103/PhysRevLett.102.087404

    Article  CAS  Google Scholar 

  7. F. Perrin, Law governing the diminution of fluorescent power as a function of concentration. Compt. Rend. 178, 1978–1980 (1924)

    CAS  Google Scholar 

  8. A. Monguzzi, R. Tubino, F. Meinardi, Upconversion-induced delayed fluorescence in multicomponent organic systems: role of Dexter energy transfer. Phys. Rev. B 77(15), 155122 (2008). https://doi.org/10.1103/PhysRevB.77.155122

    Article  CAS  Google Scholar 

  9. O.V. Mikhnenko, P.W.M. Blom, T.-Q. Nguyen, Exciton diffusion in organic semiconductors. Energy Environ. Sci. 8(7), 1867–1888 (2015). https://doi.org/10.1039/C5EE00925A

    Article  Google Scholar 

  10. M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford University Press on Demand, New York, 1999)

    Google Scholar 

  11. L. Stryer, D.D. Thomas, C.F. Meares, Diffusion-enhanced fluorescence energy transfer. Annu. Rev. Biophys. Bioeng. 11(1), 203–222 (1982)

    Article  CAS  Google Scholar 

  12. M.A. Islam, Einstein–Smoluchowski diffusion equation: a discussion. Phys. Scr. 70(2–3), 120–125 (2004). https://doi.org/10.1088/0031-8949/70/2-3/008

    Article  CAS  Google Scholar 

  13. A. Monguzzi, J. Mezyk, F. Scotognella, R. Tubino, F. Meinardi, Upconversion-induced fluorescence in multicomponent systems: steady-state excitation power threshold. Phys. Rev. B 78(19), 195112 (2008). https://doi.org/10.1103/PhysRevB.78.195112

    Article  CAS  Google Scholar 

  14. A. Monguzzi, F. Bianchi, A. Bianchi, M. Mauri, R. Simonutti, R. Ruffo, R. Tubino, F. Meinardi, High efficiency up-converting single phase elastomers for photon managing applications. Adv. Energy Mater. 3(5), 680–686 (2013). https://doi.org/10.1002/aenm.201200897

    Article  CAS  Google Scholar 

  15. V. Ern, Anisotropy of triplet exciton diffusion in anthracene. Phys. Rev. Lett. 22(8), 343–345 (1969). https://doi.org/10.1103/PhysRevLett.22.343

    Article  CAS  Google Scholar 

  16. L. Grisanti, Y. Olivier, L. Wang, S. Athanasopoulos, J. Cornil, D. Beljonne, Roles of local and nonlocal electron-phonon couplings in triplet exciton diffusion in the anthracene crystal. Phys. Rev. B 88(3), 035450 (2013). https://doi.org/10.1103/PhysRevB.88.035450

    Article  CAS  Google Scholar 

  17. V. Gray, K. Moth-Poulsen, B. Albinsson, M. Abrahamsson, Towards efficient solid-state triplet–triplet annihilation based photon upconversion: supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 362, 54–71 (2018). https://doi.org/10.1016/j.ccr.2018.02.011

    Article  CAS  Google Scholar 

  18. Y.C. Simon, C. Weder, Low-power photon upconversion through triplet–triplet annihilation in polymers. J. Mater. Chem. 22(39), 20817–20830 (2012)

    Article  CAS  Google Scholar 

  19. A. Monguzzi, M. Mauri, A. Bianchi, M.K. Dibbanti, R. Simonutti, F. Meinardi, Solid-state sensitized upconversion in polyacrylate elastomers. J. Phys. Chem. C 120(5), 2609–2614 (2016). https://doi.org/10.1021/acs.jpcc.6b00223

    Article  CAS  Google Scholar 

  20. D.C. Thévenaz, A. Monguzzi, D. Vanhecke, R. Vadrucci, F. Meinardi, Y.C. Simon, C. Weder, Thermoresponsive low-power light upconverting polymer nanoparticles. Mater. Horiz. 3(6), 602–607 (2016). https://doi.org/10.1039/C6MH00290K

    Article  CAS  Google Scholar 

  21. C. Li, C. Koenigsmann, F. Deng, A. Hagstrom, C.A. Schmuttenmaer, J.-H. Kim, Photocurrent enhancement from solid-state triplet–triplet annihilation upconversion of low-intensity, low-energy photons. ACS Photonics 3(5), 784–790 (2016). https://doi.org/10.1021/acsphotonics.5b00694

    Article  CAS  Google Scholar 

  22. A. Monguzzi, A. Oertel, D. Braga, A. Riedinger, D.K. Kim, P.N. Knüsel, A. Bianchi, M. Mauri, R. Simonutti, D.J. Norris, F. Meinardi, Photocatalytic water-splitting enhancement by sub-bandgap photon harvesting. ACS Appl. Mater. Interfaces 9(46), 40180–40186 (2017). https://doi.org/10.1021/acsami.7b10829

    Article  CAS  Google Scholar 

  23. A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322(8), 549–560 (1905)

    Article  Google Scholar 

  24. M. Von Smoluchowski, Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen. Ann. Phys. 326(14), 756–780 (1906)

    Article  Google Scholar 

  25. G.D. Scholes, Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54(1), 57–87 (2003). https://doi.org/10.1146/annurev.physchem.54.011002.103746

    Article  CAS  Google Scholar 

  26. S.H.C. Askes, V.C. Leeuwenburgh, W. Pomp, H. Arjmandi-Tash, S. Tanase, T. Schmidt, S. Bonnet, Water-dispersible silica-coated upconverting liposomes: can a thin silica layer protect TTA-UC against oxygen quenching? ACS Biomater Sci. Eng. 3(3), 322–334 (2017). https://doi.org/10.1021/acsbiomaterials.6b00678

    Article  CAS  Google Scholar 

  27. P. Duan, N. Yanai, H. Nagatomi, N. Kimizuka, Photon upconversion in supramolecular gel matrixes: spontaneous accumulation of light-harvesting donor–acceptor arrays in nanofibers and acquired air stability. J. Am. Chem. Soc. 137(5), 1887–1894 (2015). https://doi.org/10.1021/ja511061h

    Article  CAS  Google Scholar 

  28. T. Ogawa, N. Yanai, A. Monguzzi, N. Kimizuka, Highly efficient photon upconversion in self-assembled light-harvesting molecular systems. Sci. Rep. 5(1), 10882 (2015). https://doi.org/10.1038/srep10882

    Article  CAS  Google Scholar 

  29. K. Kamada, Y. Sakagami, T. Mizokuro, Y. Fujiwara, K. Kobayashi, K. Narushima, S. Hirata, M. Vacha, Efficient triplet–triplet annihilation upconversion in binary crystalline solids fabricated via solution casting and operated in air. Materials Horizons 4(1), 83–87 (2017)

    Article  CAS  Google Scholar 

  30. A. Monguzzi, R. Tubino, S. Hoseinkhani, M. Campione, F. Meinardi, Low power, non-coherent sensitized photon up-conversion: modelling and perspectives. Phys. Chem. Chem. Phys. 14(13), 4322–4332 (2012)

    Article  CAS  Google Scholar 

  31. J. Park, M. Xu, F. Li, H.-C. Zhou, 3D long-range triplet migration in a water-stable metal–organic framework for upconversion-based ultralow-power in vivo imaging. J. Am. Chem. Soc. 140(16), 5493–5499 (2018). https://doi.org/10.1021/jacs.8b01613

    Article  CAS  Google Scholar 

  32. H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to Metal–Organic Frameworks (ACS Publications, 2012)

    Book  Google Scholar 

  33. A. Monguzzi, M. Ballabio, N. Yanai, N. Kimizuka, D. Fazzi, M. Campione, F. Meinardi, Highly fluorescent metal–organic-framework nanocomposites for photonic applications. Nano Lett. 18(1), 528–534 (2018). https://doi.org/10.1021/acs.nanolett.7b04536

    Article  CAS  Google Scholar 

  34. F. Meinardi, M. Ballabio, N. Yanai, N. Kimizuka, A. Bianchi, M. Mauri, R. Simonutti, A. Ronchi, M. Campione, A. Monguzzi, Quasi-thresholdless photon upconversion in metal–organic framework nanocrystals. Nano Lett. 19(3), 2169–2177 (2019). https://doi.org/10.1021/acs.nanolett.9b00543

    Article  CAS  Google Scholar 

  35. J. Perego, J. Pedrini, C.X. Bezuidenhout, P.E. Sozzani, F. Meinardi, S. Bracco, A. Comotti, A. Monguzzi, Engineering porous emitting framework nanoparticles with integrated sensitizers for low-power photon upconversion by triplet fusion. Adv. Mater. 31(40), 1903309 (2019)

    Article  CAS  Google Scholar 

  36. R.R. Islangulov, J. Lott, C. Weder, F.N. Castellano, Noncoherent low-power upconversion in solid polymer films. J. Am. Chem. Soc. 129(42), 12652–12653 (2007)

    Article  CAS  Google Scholar 

  37. D. Beery, J.P. Wheeler, A. Arcidiacono, K. Hanson, CdSe quantum dot sensitized molecular photon upconversion solar cells. ACS Appl. Energy Mater. 3(1), 29–37 (2020). https://doi.org/10.1021/acsaem.9b01765

    Article  CAS  Google Scholar 

  38. M. Wu, D.N. Congreve, M.W. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M.G. Bawendi, M.A. Baldo, Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photonics 10(1), 31–34 (2016)

    Article  CAS  Google Scholar 

  39. A. Monguzzi, M. Mauri, M. Frigoli, J. Pedrini, R. Simonutti, C. Larpent, G. Vaccaro, M. Sassi, F. Meinardi, Unraveling triplet excitons photophysics in hyper-cross-linked polymeric nanoparticles: toward the next generation of solid-state upconverting materials. J. Phys. Chem. Lett. 7(14), 2779–2785 (2016). https://doi.org/10.1021/acs.jpclett.6b01115

    Article  CAS  Google Scholar 

  40. O.S. Kwon, J.-H. Kim, J.K. Cho, J.-H. Kim, Triplet–triplet annihilation upconversion in CdS-decorated SiO2 nanocapsules for sub-bandgap photocatalysis. ACS Appl. Mater. Interfaces 7(1), 318–325 (2015)

    Article  CAS  Google Scholar 

  41. S.N. Sanders, M.K. Gangishetty, M.Y. Sfeir, D.N. Congreve, Photon upconversion in aqueous nanodroplets. J. Am. Chem. Soc. 141(23), 9180–9184 (2019)

    Article  Google Scholar 

  42. R. Vadrucci, A. Monguzzi, F. Saenz, B.D. Wilts, Y.C. Simon, C. Weder, Nanodroplet-containing polymers for efficient low-power light upconversion. Adv. Mater. 29(41), 1702992 (2017)

    Article  Google Scholar 

  43. C. Wohnhaas, K. Friedemann, D. Busko, K. Landfester, S. Baluschev, D. Crespy, A. Turshatov, All organic nanofibers as ultralight versatile support for triplet–triplet annihilation upconversion. ACS Macro Lett. 2(5), 446–450 (2013)

    Article  CAS  Google Scholar 

  44. Y.Y. Cheng, B. Fückel, T. Khoury, R.G. Clady, M.J. Tayebjee, N. Ekins-Daukes, M.J. Crossley, T.W. Schmidt, Kinetic analysis of photochemical upconversion by triplet−triplet annihilation: beyond any spin statistical limit. J. Phys. Chem. Lett. 1(12), 1795–1799 (2010)

    Article  CAS  Google Scholar 

  45. H. Najafov, B. Lee, Q. Zhou, L.C. Feldman, V. Podzorov, Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nat. Mater. 9(11), 938–943 (2010)

    Article  CAS  Google Scholar 

  46. S. Mattiello, A. Monguzzi, J. Pedrini, M. Sassi, C. Villa, Y. Torrente, R. Marotta, F. Meinardi, L. Beverina, Self-assembled dual dye-doped nanosized micelles for high-contrast up-conversion bioimaging. Adv. Funct. Mater. 26(46), 8447–8454 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Monguzzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monguzzi, A. (2022). Photon Upconversion Based on Sensitized Triplet-Triplet Annihilation (sTTA) in Solids. In: Lissau, J.S., Madsen, M. (eds) Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-70358-5_4

Download citation

Publish with us

Policies and ethics