Skip to main content

Abstract

The high-energy (blue) part of the solar spectrum is inefficiently converted in conventional solar cells, mainly because the high-energy excitations thermalize to the bandgap before they are extracted. Several strategies have been devised to tackle these thermalization losses, most prominently tandem solar cells. However, these tandem cells require an intricate device design and current matching in case of a series connection. Downconversion via singlet fission and quantum cutting promise a better use of the high-energy photons, avoiding a large fraction of the thermalization losses, but without the intricate fabrication and design constraints of tandem cells. In this chapter we review the progress made towards efficient singlet fission and quantum cutting downconversion. We start with the potential for solar cell integration, reviewing the different integration schemes and their efficiency potential. In the second part we review the progress towards solar cells that utilize singlet fission and quantum cutting from all-organic devices to hybrid two-bandgap devices and fully optical integration. Finally, we lay out the challenges for using these downconversion schemes in commercial solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IRENA. Renewable Capacity Statistics 2020. International Renewable Energy Agency (2020)

    Google Scholar 

  2. A. Jäger-Waldau, PV Status Report 2019, EUR 29938. Publications Office of the European Union (2019). https://doi.org/10.2760/326629

  3. Energy Watch Group. Global Energy System based on 100% Renewable Energy. Energy Watch Group (2019)

    Google Scholar 

  4. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Article  CAS  Google Scholar 

  5. Edmond D Jackson, Solar energy converter (U.S. Patent No. 2,949,498) (1960)

    Google Scholar 

  6. D.L. Dexter, Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells. J. Lumin. 18–19, 779–784 (1979)

    Article  Google Scholar 

  7. M.A. Green et al., Solar cell efficiency tables (Version 55). Prog. Photovolt. Res. Appl. 28, 3–15 (2020)

    Article  Google Scholar 

  8. H. Liu et al., The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study. Opt. Express 23, A382 (2015)

    Article  CAS  Google Scholar 

  9. M.H.M.H. Futscher, B. Ehrler, Modeling the performance limitations and prospects of perovskite/Si tandem solar cells under realistic operating conditions. ACS Energy Lett. 2, 2089–2095 (2017)

    Article  CAS  Google Scholar 

  10. A.D. Vos, Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D. Appl. Phys. 13, 839 (1980)

    Article  Google Scholar 

  11. S.P. Bremner, M.Y. Levy, C.B. Honsberg, Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Prog. Photovoltaics Res. Appl. 16, 225–233 (2008)

    Article  Google Scholar 

  12. A.S. Brown, M.A. Green, Detailed balance limit for the series constrained two terminal tandem solar cell, in Physica E: Low-Dimensional Systems and Nanostructures, vol. 14, (North-Holland, 2002), pp. 96–100

    Google Scholar 

  13. T.P. White, N.N. Lal, K.R. Catchpole, Tandem solar cells based on high-efficiency c-Si bottom cells: top cell requirements for >30% efficiency. IEEE J. Photovoltaics 4, 208–214 (2014)

    Article  Google Scholar 

  14. M.H. Futscher, B. Ehrler, Efficiency limit of perovskite/Si tandem solar cells. ACS Energy Lett. 1, 863–868 (2016)

    Article  CAS  Google Scholar 

  15. M.T. Hörantner, H.J. Snaith, Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy Environ. Sci. 10, 1983–1993 (2017)

    Article  Google Scholar 

  16. C.A. Parker, C.G. Hatchard, Delayed fluorescence from solutions of anthracene and phenanthrene. Proc. Chem. Soc. (1962). https://doi.org/10.1098/rspa.1962.0197

  17. T.N. Singh-Rachford, F.N. Castellano, Photon upconversion based on sensitized triplet-triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010)

    Article  CAS  Google Scholar 

  18. T. Dilbeck, K. Hanson, Molecular photon upconversion solar cells using multilayer assemblies: progress and prospects. J. Phys. Chem. Lett. 9, 5810–5821 (2018)

    Article  CAS  Google Scholar 

  19. Z. Huang et al., Hybrid molecule-nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15, 5552–5557 (2015)

    Article  CAS  Google Scholar 

  20. M. Wu et al., Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photonics 10, 31–34 (2015)

    Article  CAS  Google Scholar 

  21. M. Mahboub, Z. Huang, M.L. Tang, Efficient infrared-to-visible upconversion with subsolar irradiance. Nano Lett. 16, 7169–7175 (2016). https://doi.org/10.1021/acs.nanolett.6b03503

    Article  CAS  Google Scholar 

  22. C. Mongin, S. Garakyaraghi, N. Razgoniaeva, M. Zamkov, F.N. Castellano, Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351, 369–372 (2016)

    Article  CAS  Google Scholar 

  23. K.I.M. Jeoncho, C.Y. Wong, G.D. Scholes, Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Acc. Chem. Res. 42, 1037–1046 (2009). https://doi.org/10.1021/ar8002046

    Article  CAS  Google Scholar 

  24. L. Nienhaus et al., Triplet-sensitization by lead halide perovskite thin films for near-infrared-to-visible upconversion. ACS Energy Lett. 4, 888–895 (2019). https://doi.org/10.1021/acsenergylett.9b00283

    Article  CAS  Google Scholar 

  25. S. Wieghold et al., Triplet sensitization by Lead halide perovskite thin films for efficient solid-state photon upconversion at subsolar fluxes. Matter 1, 705–719 (2019). https://doi.org/10.1016/j.matt.2019.05.026

    Article  CAS  Google Scholar 

  26. J.V. Frangioni, In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003)

    Article  CAS  Google Scholar 

  27. L. Frazer, J.K. Gallaher, T.W. Schmidt, Optimizing the efficiency of solar photon upconversion. ACS Energy Lett. 2, 1346–1354 (2017). https://doi.org/10.1021/acsenergylett.7b00237

    Article  CAS  Google Scholar 

  28. K.M. Felter et al., Solid-state infrared upconversion in perylene diimides followed by direct Electron injection. ACS Energy Lett. 5, 124–129 (2020). https://doi.org/10.1021/acsenergylett.9b02361

    Article  CAS  Google Scholar 

  29. M. Gaetan, O. Sinead, R. Manoel, Global market outlook. Eur. Photovolt. Ind. Assoc. 60 (2018). https://doi.org/10.1787/key_energ_stat-2014-en

  30. H. Park, S. Chang, S. Park, W.K. Kim, Outdoor performance test of bifacial n-type silicon photovoltaic modules. Sustainability 11 (2019)

    Google Scholar 

  31. A.J. Nozik et al., Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873–6890 (2010)

    Article  CAS  Google Scholar 

  32. R.J. Ellingson et al., Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005)

    Article  CAS  Google Scholar 

  33. M.M.C. Hanna, A.A.J. Nozik, Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 74510 (2006)

    Article  CAS  Google Scholar 

  34. C. Smith, D. Binks, Multiple exciton generation in colloidal nanocrystals. Nanomaterials 4, 19–45 (2013)

    Article  CAS  Google Scholar 

  35. J.M. Luther et al., Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Lett. 7, 1779–1784 (2007)

    Article  CAS  Google Scholar 

  36. M. Li et al., Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals. Nat. Commun. 9, 4197 (2018). https://doi.org/10.1038/s41467-018-06596-1

    Article  CAS  Google Scholar 

  37. C. de Weerd et al., Efficient carrier multiplication in CsPbI3 perovskite nanocrystals. Nat. Commun. 9, 4199 (2018). https://doi.org/10.1038/s41467-018-06721-0

    Article  CAS  Google Scholar 

  38. M.L. Steigerwald, L.E. Brus, Synthesis, stabilization, and electronic structure of quantum semiconductor nanoclusters. Annu. Rev. Mater. Sci. 19, 471–495 (1989)

    Article  CAS  Google Scholar 

  39. I.J.I. Kramer, E.H. Sargent, Colloidal quantum dot photovoltaics: a path forward. ACS Nano 5, 8506–8514 (2011)

    Article  CAS  Google Scholar 

  40. A. Luque, A. Martí, A.J. Nozik, Solar cells based on quantum dots: multiple exciton generation and intermediate bands. MRS Bull. 32, 236–241 (2007)

    Article  CAS  Google Scholar 

  41. O.E. Semonin et al., Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011)

    Article  CAS  Google Scholar 

  42. M.L.M.L. Böhm et al., Lead telluride quantum dot solar cells displaying external quantum efficiencies exceeding 120%. Nano Lett. 15, 7987–7993 (2015)

    Article  CAS  Google Scholar 

  43. N.J.L.K. Davis et al., Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat. Commun. 6, 8259 (2015)

    Article  CAS  Google Scholar 

  44. M. Biondi et al., A chemically orthogonal hole transport layer for efficient colloidal quantum dot solar cells. Adv. Mater. 32, 1906199 (2020). https://doi.org/10.1002/adma.201906199

    Article  CAS  Google Scholar 

  45. J. Yuan et al., Metal halide perovskites in quantum dot solar cells: progress and prospects. Joule 4, 1160–1185 (2020). https://doi.org/10.1016/j.joule.2020.04.006

    Article  CAS  Google Scholar 

  46. D. Zhou et al., Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells. Adv. Mater. 29 (2017)

    Google Scholar 

  47. T.J. Milstein, D.M. Kroupa, D.R. Gamelin, Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals. Nano Lett. 18, 3792–3799 (2018). https://doi.org/10.1021/acs.nanolett.8b01066

    Article  CAS  Google Scholar 

  48. D.M. Kroupa, J.Y. Roh, T.J. Milstein, S.E. Creutz, D.R. Gamelin, Quantum-cutting ytterbium-doped CsPb(Cl1-xBrx)3 perovskite thin films with photoluminescence quantum yields over 190%. ACS Energy Lett. 3, 2390–2395 (2018). https://doi.org/10.1021/acsenergylett.8b01528

    Article  CAS  Google Scholar 

  49. M.J. Crane, D.M. Kroupa, D.R. Gamelin, Detailed-balance analysis of Yb3+:CsPb(Cl1-: XBrx)3 quantum-cutting layers for high-efficiency photovoltaics under real-world conditions. Energy Environ. Sci. (2019). https://doi.org/10.1039/c9ee01493d

  50. D. Zhou et al., Impact of host composition, codoping, or tridoping on quantum-cutting emission of ytterbium in halide perovskite quantum dots and solar cell applications. Nano Lett. 19, 6904–6913 (2019). https://doi.org/10.1021/acs.nanolett.9b02139

    Article  CAS  Google Scholar 

  51. G.B. Piland, C.J. Bardeen, How morphology affects singlet fission in crystalline tetracene. J. Phys. Chem. Lett. 6, 1841–1846 (2015)

    Article  CAS  Google Scholar 

  52. A.J. Musser et al., Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat. Phys. 11, 352–357 (2015)

    Article  CAS  Google Scholar 

  53. A.B. Kolomeisky, X. Feng, A.I. Krylov, A simple kinetic model for singlet fission: a role of electronic and entropic contributions to macroscopic rates. J. Phys. Chem. C 118, 5188–5195 (2014)

    Article  CAS  Google Scholar 

  54. S. Yoo et al., Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing. Solid State Electron. 51, 1367–1375 (2007)

    Article  CAS  Google Scholar 

  55. A.K. Pandey, S. Dabos-Seignon, J.-M. Nunzi, Pentacene: PTCDI-C_{13}H_{27} molecular blends efficiently harvest light for solar cell applications. Appl. Phys. Lett. 89, 113506 (2006)

    Article  CAS  Google Scholar 

  56. J. Lee, P.J. Jadhav, M.A. Baldo, High efficiency organic multilayer photodetectors based on singlet exciton fission. Appl. Phys. Lett. 95, 33301 (2009)

    Article  CAS  Google Scholar 

  57. P.J. Jadhav et al., Triplet exciton dissociation in singlet exciton fission photovoltaics. Adv. Mater. 24, 6169–6174 (2012)

    Article  CAS  Google Scholar 

  58. P.P.J. Jadhav, A. Mohanty, J.M. Sussman, J. Lee, M.A. Baldo, Singlet exciton fission in nanostructured organic solar cells. Nano Lett. 11, 1495–1498 (2011)

    Article  CAS  Google Scholar 

  59. P.S. Abthagir et al., Studies of tetracene- and pentacene-based organic thin-film transistors fabricated by the neutral cluster beam deposition method. J. Phys. Chem. B 109, 23918–23924 (2005)

    Article  CAS  Google Scholar 

  60. T.C. Wu et al., Singlet fission efficiency in tetracene-based organic solar cells. Appl. Phys. Lett. 104, 193901 (2014)

    Article  CAS  Google Scholar 

  61. L. Yang et al., Solution-Processable singlet fission photovoltaic devices. Nano Lett. 15, 354–358 (2014)

    Article  CAS  Google Scholar 

  62. B. Ehrler, M.W.B. Wilson, A. Rao, R.H. Friend, N.C. Greenham, Singlet exciton fission-sensitized infrared quantum dot solar cells. Nano Lett. 12, 1053–1057 (2012)

    Article  CAS  Google Scholar 

  63. B. Ehrler et al., In situ measurement of exciton energy in hybrid singlet-fission solar cells. Nat. Commun. 3, 1019 (2012)

    Article  CAS  Google Scholar 

  64. M. Yuan et al., Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 1, 16016 (2016)

    Article  CAS  Google Scholar 

  65. N.J. Thompson et al., Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nat. Mater. 13, 1039–1043 (2014)

    Article  CAS  Google Scholar 

  66. M. Tabachnyk et al., Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat. Mater. 13, 1033–1038 (2014)

    Article  CAS  Google Scholar 

  67. J. Xia et al., Singlet fission: progress and prospects in solar cells. Adv. Mater. 29 (2017)

    Google Scholar 

  68. C. Jundt et al., Exciton dynamics in pentacene thin films studied by pump-probe spectroscopy. Chem. Phys. Lett. 241, 84–88 (1995)

    Article  CAS  Google Scholar 

  69. N. Renaud, F.C. Grozema, Intermolecular vibrational modes speed up singlet fission in perylenediimide crystals. J. Phys. Chem. Lett. 6, 360–365 (2015)

    Article  CAS  Google Scholar 

  70. S.W. Eaton et al., Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. J. Am. Chem. Soc. 135, 14701–14712 (2013)

    Article  CAS  Google Scholar 

  71. S.W. Eaton et al., Singlet exciton fission in thin films of tert-butyl-substituted terrylenes. J. Phys. Chem. A 119, 4151–4161 (2015)

    Article  CAS  Google Scholar 

  72. S.N. Sanders et al., Quantitative intramolecular singlet fission in bipentacenes. J. Am. Chem. Soc. 137, 8965–8972 (2015)

    Article  CAS  Google Scholar 

  73. N. Alagna et al., Singlet fission in tetraaza-TIPS-pentacene oligomers: from fs excitation to μs triplet decay via the biexcitonic state. J. Phys. Chem. B 123, 10780–10793 (2019)

    Article  CAS  Google Scholar 

  74. N.V. Korovina, C.H. Chang, J.C. Johnson, Spatial separation of triplet excitons drives endothermic singlet fission. Nat. Chem. 12, 391–398 (2020)

    Article  CAS  Google Scholar 

  75. E. Busby et al., A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor-acceptor organic materials. Nat. Mater. 14, 426–433 (2015)

    Article  CAS  Google Scholar 

  76. A.J. Musser et al., Activated singlet exciton fission in a semiconducting polymer. J. Am. Chem. Soc. 135, 12747–12754 (2013)

    Article  CAS  Google Scholar 

  77. D.N. Congreve et al., External quantum efficiency above 100% in a singlet-exciton-fission based organic photovoltaic cell. Science 340, 334–337 (2013)

    Article  CAS  Google Scholar 

  78. D. Guo et al., Charge transfer dynamics in a singlet fission organic molecule and organometal perovskite bilayer structure. J. Mater. Chem. A 8, 5572–5579 (2020)

    Article  CAS  Google Scholar 

  79. S. Jäckle et al., Junction formation and current transport mechanisms in hybrid n-Si/PEDOT:PSS solar cells. Sci. Rep. 5, 13008 (2015)

    Article  CAS  Google Scholar 

  80. S.W. Glunz, F. Feldmann, SiO2 surface passivation layers—a key technology for silicon solar cells. Sol. Energy Mater. Sol. Cells 185, 260–269 (2018). https://doi.org/10.1016/j.solmat.2018.04.029

    Article  CAS  Google Scholar 

  81. S. Reineke, M.A. Baldo, Room temperature triplet state spectroscopy of organic semiconductors. Sci. Rep. 4, 3797 (2014)

    Article  CAS  Google Scholar 

  82. S.W. Tabernig, B. Daiber, T. Wang, B. Ehrler, Enhancing silicon solar cells with singlet fission: the case for Förster resonant energy transfer using a quantum dot intermediate. J. Photonics Energy 8 (2018)

    Google Scholar 

  83. D.K.G. de Boer et al., Directional sideward emission from luminescent plasmonic nanostructures. Opt. Express 24, A388–A396 (2016). https://doi.org/10.1364/oe.24.00a388

    Article  CAS  Google Scholar 

  84. D.A. Hanifi et al., Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science 363, 1199–1202 (2019). https://doi.org/10.1126/science.aat3803

    Article  CAS  Google Scholar 

  85. S. Pradhan et al., High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 14, 72–79 (2019). https://doi.org/10.1038/s41565-018-0312-y

    Article  CAS  Google Scholar 

  86. N.J.L.K. Davis et al., Singlet fission and triplet transfer to PbS quantum dots in TIPS-tetracene carboxylic acid ligands. J. Phys. Chem. Lett. 9, 1454–1460 (2018). https://doi.org/10.1021/acs.jpclett.8b00099

    Article  CAS  Google Scholar 

  87. M.H. Futscher, A. Rao, B. Ehrler, The potential of singlet fission photon multipliers as an alternative to silicon-based tandem solar cells. ACS Energy Lett. 3, 2587–2592 (2018)

    Article  CAS  Google Scholar 

  88. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953)

    Article  CAS  Google Scholar 

  89. G.D. Scholes, Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003)

    Article  CAS  Google Scholar 

  90. M. Tabachnyk, B. Ehrler, S. Bayliss, R.H. Friend, N.C. Greenham, Triplet diffusion in singlet exciton fission sensitized pentacene solar cells. Appl. Phys. Lett. 103, 153302 (2013)

    Article  CAS  Google Scholar 

  91. M. Pope, N.E. Geacintov, D. Saperstein, F. Vogel, Calculation of the diffusion length, diffusion coefficient and lifetime of triplet excitons in crystalline tetracene. J. Lumin. 1–2, 224–230 (1970). https://doi.org/10.1016/0022-2313(70)90037-2

    Article  Google Scholar 

  92. F. Plasser, S.A. Mewes, A. Dreuw, L. González, Detailed wave function analysis for multireference methods: implementation in the Molcas program package and applications to tetracene. J. Chem. Theory Comput. 13, 5343–5353 (2017). https://doi.org/10.1021/acs.jctc.7b00718

    Article  CAS  Google Scholar 

  93. S.L. Bayliss et al., Geminate and nongeminate recombination of triplet excitons formed by singlet fission. Phys. Rev. Lett. 112, 238701 (2014)

    Article  CAS  Google Scholar 

  94. R.W. MacQueen et al., Crystalline silicon solar cells with tetracene interlayers: the path to silicon-singlet fission heterojunction devices. Mater. Horiz. 5, 1065–1075 (2018)

    Article  CAS  Google Scholar 

  95. M. Einzinger et al., Sensitization of silicon by singlet exciton fission in tetracene. Nature 571, 90–94 (2019). https://doi.org/10.1038/s41586-019-1339-4

    Article  CAS  Google Scholar 

  96. M.J.Y. Tayebjee, A.A. Gray-Weale, T.W. Schmidt, Thermodynamic limit of exciton fission solar cell efficiency. J. Phys. Chem. Lett. 3, 2749–2754 (2012)

    Article  CAS  Google Scholar 

  97. P.D. Reusswig, D.N. Congreve, N.J. Thompson, M.A. Baldo, Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer. Appl. Phys. Lett. 101, 113304 (2012)

    Article  CAS  Google Scholar 

  98. H. Lu, X. Chen, J.E. Anthony, J.C. Johnson, M.C. Beard, Sensitizing singlet fission with perovskite nanocrystals. J. Am. Chem. Soc. 141, 4919–4927 (2019)

    Article  CAS  Google Scholar 

  99. Y. Hu, L. Song, Y. Chen, W. Huang, Two-terminal perovskites tandem solar cells: recent advances and perspectives. Solar RRL 3, 1900080 (2019). https://doi.org/10.1002/solr.201900080

    Article  CAS  Google Scholar 

  100. R. Asadpour, R.V.K. Chavali, M. Ryyan Khan, M.A. Alam, Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (ηT∗ ∼33%) solar cell. Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4922375

  101. J. Lehr et al., Energy yield of bifacial textured perovskite/silicon tandem photovoltaic modules. Sol. Energy Mater. Sol. Cells 208, 110367 (2020)

    Article  CAS  Google Scholar 

  102. G. Coletti et al., Bifacial four-terminal perovskite/silicon tandem solar cells and modules. ACS Energy Lett. 5, 1676–1680 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Ehrler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ehrler, B. (2022). Singlet Fission Solar Cells. In: Lissau, J.S., Madsen, M. (eds) Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-70358-5_15

Download citation

Publish with us

Policies and ethics