Skip to main content

Nanophotonics for Photon Upconversion Enhancement

  • 427 Accesses

Abstract

Lanthanide-based upconversion materials convert low-energy infrared photons into high-energy visible photons with much higher efficiency than two-photon absorption or second harmonic generation. Naturally, they have attracted much attention for potential applications in solar energy harvesting, photocatalysis, security, and biological imaging. Despite the high promise, the intrinsic conversion efficiency of upconversion materials remains low for most applications. The emergent nanophotonic technologies could provide a powerful tool to boost the upconversion efficiency and enable novel applications. In this chapter, we provide an in-depth review of the theoretical foundation for light-matter interaction, dynamics of luminescence upconversion process, and nanophotonic enhancement mechanisms. We then provide a comprehensive survey of recent progress in nanophotonic enhancement of upconversion. The use of plasmonic and dielectric nanostructures has led to 2–3 orders of magnitude improvements in upconversion efficiency. The accelerating pace of progress makes nanophotonically enhanced upconversion a highly promising platform for novel photonic applications.

Keywords

  • Energy transfer
  • Lanthanide ion
  • Luminescence upconversion
  • Nanoparticle
  • Photonic crystal
  • Surface plasmon

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-70358-5_13
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-70358-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2
Fig. 13.3

References

  1. H.W. Leverenz, An Introduction to Luminescence of Solids (Dover Publications, 1968)

    Google Scholar 

  2. F. Auzel, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B 263, 819 (1966)

    Google Scholar 

  3. V.V. Ovsyankin, P.P. Feofilov, Sov. Phys. Usp. 15, 354 (1972)

    CrossRef  Google Scholar 

  4. E. Nakazawa, S. Shionoya, Phys. Rev. Lett. 25, 1710 (1970)

    CAS  CrossRef  Google Scholar 

  5. J.S. Chivian, W.E. Case, D.D. Eden, Appl. Phys. Lett. 35, 124 (1979)

    CAS  CrossRef  Google Scholar 

  6. R.H. Page, K.I. Schaffers, P.A. Waide, J.B. Tassano, S.A. Payne, W.F. Krupke, W.K. Bischel, J. Opt. Soc. Am. B: Opt. Phys. 15, 996 (1998)

    CAS  CrossRef  Google Scholar 

  7. S. Heer, K. Kompe, H.U. Gudel, M. Haase, Adv. Mater. 16, 2102 (2004)

    CAS  CrossRef  Google Scholar 

  8. K.W. Krämer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, S.R. Lüthi, Chem. Mater. 16, 1244 (2004)

    CrossRef  Google Scholar 

  9. G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, L.-H. Guo, Nano Lett. 4, 2191 (2004)

    CAS  CrossRef  Google Scholar 

  10. S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, D. Jin, Nat. Commun. 9, 2415 (2018)

    CrossRef  Google Scholar 

  11. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012)

    CrossRef  Google Scholar 

  12. B. Di Bartolo, Optical Interactions in Solids (World Scientific, Singapore, 2010)

    CrossRef  Google Scholar 

  13. W. Park, C.J. Summers, Y.R. Do, H.G. Yang, J. Mater. Sci. 37, 4041 (2002)

    CAS  CrossRef  Google Scholar 

  14. W. Park, R.Y. Lee, C.J. Summers, Y.R. Do, H.G. Yang, Mater. Sci. Eng. B 78, 28 (2000)

    CrossRef  Google Scholar 

  15. J. Zhang, J. Lin, J. Cryst. Growth 271, 207 (2004)

    CAS  CrossRef  Google Scholar 

  16. B.R. Judd, Phys. Rev. 127, 750 (1962)

    CAS  CrossRef  Google Scholar 

  17. G.S. Ofelt, J. Chem. Phys. 37, 511 (1962)

    CAS  CrossRef  Google Scholar 

  18. T. Förster, Ann. Phys. 2, 55 (1948)

    CrossRef  Google Scholar 

  19. D.L. Dexter, J. Chem. Phys. 21, 836 (1953)

    CAS  CrossRef  Google Scholar 

  20. X. Yu, C.J. Summers, W. Park, J. Appl. Phys. 111, 073524 (2012)

    CrossRef  Google Scholar 

  21. D. Lu, S.K. Cho, S. Ahn, L. Brun, C.J. Summers, W. Park, ACS Nano 8, 7780 (2014)

    CAS  CrossRef  Google Scholar 

  22. D. Lu, C. Mao, S.K. Cho, S. Ahn, W. Park, Sci. Rep. 6, 18894 (2016)

    CAS  CrossRef  Google Scholar 

  23. E.M. Purcell, Phys. Rev. 69, 681 (1946)

    CrossRef  Google Scholar 

  24. S. Haroche, D. Kleppner, Phys. Today 42, 24 (1989)

    CAS  CrossRef  Google Scholar 

  25. P. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett. 96, 113002 (2006)

    CrossRef  Google Scholar 

  26. H.T. Dung, L. Knoll, D.G. Welsch, Phys. Rev. A 65, 043813 (2002)

    CrossRef  Google Scholar 

  27. P. Andrew, W.L. Barnes, Science 290, 785 (2000)

    CAS  CrossRef  Google Scholar 

  28. M. de Dood, J. Knoester, A. Tip, A. Polman, Phys. Rev. B 71, 115102 (2005)

    CrossRef  Google Scholar 

  29. C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A.P. Mosk, V. Subramaniam, W.L. Vos, Phys. Rev. Lett. 109, 203601 (2012)

    CrossRef  Google Scholar 

  30. W. Park, D. Lu, S. Ahn, Chem. Soc. Rev. 44, 2940 (2015)

    CAS  CrossRef  Google Scholar 

  31. A. Das, K. Bae, W. Park, Nanophotonics 9, 1359 (2020)

    CAS  CrossRef  Google Scholar 

  32. A. Das, C. Mao, S. Cho, K. Kim, W. Park, Nat. Commun. 9, 4828 (2018)

    CrossRef  Google Scholar 

  33. K. Min, H. Jung, Y. Park, K.S. Cho, Y.G. Roh, S.W. Hwang, H. Jeon, Nanoscale 9, 8703 (2017)

    CAS  CrossRef  Google Scholar 

  34. C. Mao, K. Min, K. Bae, S. Cho, T. Xu, H. Jeon, W. Park, ACS Photonics 6, 1882 (2019)

    CAS  CrossRef  Google Scholar 

  35. A. Fernandez-Bravo et al., Nat. Mater. 18, 1172 (2019)

    CAS  CrossRef  Google Scholar 

  36. S.P. Madsen et al., J. Phys. D. Appl. Phys. 53 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wounjhang Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Park, W., Das, A., Bae, K. (2022). Nanophotonics for Photon Upconversion Enhancement. In: Lissau, J.S., Madsen, M. (eds) Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-70358-5_13

Download citation