Skip to main content

Wheel–Rail Impact Loads, Noise and Vibration: A Review of Excitation Mechanisms, Prediction Methods and Mitigation Measures

  • Conference paper
  • First Online:
Noise and Vibration Mitigation for Rail Transportation Systems

Abstract

Railway noise and ground-borne vibration induced by wheel–rail impact loads are generated by discrete wheel/rail surface irregularities or local deviations in the nominal wheel–rail contact geometry. On the running surface of a rail, a discrete irregularity can be inherent to the railway design, for example at crossings or insulated joints. On the wheel or rail, the irregularity could also be the result of surface damage due to rolling contact fatigue cracking or a consequence of wheel sliding without rolling. This review describes the mechanisms of wheel–rail impact generated by wheel flats, rail joints and crossings. These can be a source of locally increased noise and vibration levels and increased annoyance, as well as of damage to vehicle and track components. The wheel–rail excitation at such irregularities, as indicated by the vertical wheel centre trajectory, leads to an abrupt change of momentum, potentially causing a momentary loss of wheel–rail contact followed by an impact on the rail. The resulting loading is a transient and often periodically repeated event exciting vibration in a wide frequency range with most of the energy concentrated below about 1 kHz. For the numerical prediction of high-magnitude transient loading and situations potentially leading to loss of contact, a non-linear wheel–rail contact model is required, implying that the simulation of contact force is carried out in the time domain. To avoid the need for large, computationally expensive models, a hybrid approach has been developed in which the time history of the contact force is transformed into an equivalent roughness spectrum; this is used as input to frequency-domain models for the prediction of noise and vibration. Since the excitation mechanism is similar to that for rolling noise, the same types of measures to mitigate wheel and track vibration can be applied. However, the main priority should be to control the irregularity by design and regular maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson, D.: Railway Noise and Vibration: Mechanisms, Modelling and Means of Control, 1st edn. Elsevier, Amsterdam (2009)

    Google Scholar 

  2. Thompson, D.J., Jones, C.J.C.: A review of the modelling of wheel/rail noise generation. J. Sound Vib. 231(3), 519–536 (2000)

    Article  Google Scholar 

  3. Thompson, D.J., Gautier, P.-E.: Review of research into wheel/rail rolling noise reduction. Proc. Inst. Mech. Eng. J. Rail Rapid Transit 220, 385–408 (2006)

    Article  Google Scholar 

  4. Talotte, C.: Aerodynamic noise: a critical survey. J. Sound Vib. 231(3), 549–562 (2000)

    Article  Google Scholar 

  5. Thompson, D.J., Latorre Iglesias, E., Liu, X., Zhu, J., Hu, Z.: Recent developments in the prediction and control of aerodynamic noise from high-speed trains. Int. J. Rail Transp. 3(3), 119–150 (2015)

    Article  Google Scholar 

  6. Remington, P.J.: Wheel/rail squeal and impact noise: What do we know? What don’t we know? Where do we go from here? J. Sound Vib. 116(2), 339–353 (1985)

    Article  Google Scholar 

  7. Thompson, D.J., Squicciarini, G., Ding, B., Baeza, L.: A state-of-the-art review of curve squeal noise: phenomena, mechanisms, modelling and mitigation. In: Anderson, D., et al. (eds.), Proceedings of the 12th International Workshop on Railway Noise, September 2016, Terrigal, Australia. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 139, pp. 3–41. Springer, Heidelberg (2018)

    Google Scholar 

  8. Vér, I.L., Ventres, C.S., Myles, M.M.: Wheel/rail noise – part III: impact noise generation by wheel and rail discontinuities. J. Sound Vib. 46(3), 395–417 (1976)

    Article  Google Scholar 

  9. Lombaert, G., Degrande, G., François, S., Thompson, D.J.: Ground-borne vibration due to railway traffic: a review of excitation mechanisms, prediction methods and mitigation measures. In: Nielsen, J.C.O., et al. (eds.), Proceedings of the 11th International Workshop on Railway Noise, September 2013, Uddevalla, Sweden. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 126, pp. 253–287, Springer, Heidelberg (2015)

    Google Scholar 

  10. Kouroussis, G., Connolly, D.P., Verlinden, O.: Railway-induced ground vibrations – a review of vehicle effects. Int. J. Rail Transp. 2(2), 69–110 (2014)

    Article  Google Scholar 

  11. Jergéus, J.: Railway wheel flats – Martensite formation, residual stresses and crack propagation. PhD thesis, Department of Solid Mechanics, Chalmers University of Technology, Gothenburg, Sweden (1998)

    Google Scholar 

  12. Nielsen, J.C.O., Johansson, A.: Out-of-round railway wheels – a literature survey. Proc. Inst. Mech. Eng. J. Rail Rapid Transit 214, 79–91 (2000)

    Article  Google Scholar 

  13. Nielsen, J.C.O.: Out-of-round railway wheels. In: Lewis, R., Olofsson, U. (eds.) Wheel-Rail Interface Handbook. Woodhead Publishing Ltd., Oxford (2009)

    Google Scholar 

  14. Snyder, T., Stone, D.H., Kristan, J.: Wheel flat and out-of-round formation and growth. In: Proceedings 2003 IEEE/ASME Joint Rail Conference, Chicago, IL, USA, pp. 143–148 (2003)

    Google Scholar 

  15. Johansson, A., Nielsen, J.C.O.: Out-of-round railway wheels – wheel–rail contact forces and track response derived from field tests and numerical simulations. Proc. Inst. Mech. Eng. J. Rail Rapid Transit 217, 135–146 (2003)

    Article  Google Scholar 

  16. Kabo, E., Nielsen, J.C.O., Ekberg, A.: Prediction of dynamic train–track interaction and subsequent material deterioration in the presence of insulated rail joints. Veh. Syst. Dyn. 44(Suppl), 718–729 (2006)

    Article  Google Scholar 

  17. Ford, R.A.J., Thompson, D.J.: Simplified contact filters in wheel/rail noise prediction. J. Sound Vib. 293, 807–818 (2006)

    Article  Google Scholar 

  18. Pålsson, B.A.: Optimisation of railway crossing geometry considering a representative set of wheel profiles. Veh. Syst. Dyn. 53, 274–301 (2015)

    Article  Google Scholar 

  19. Li, X., Torstensson, P.T., Nielsen, J.C.O.: Simulation of vertical dynamic vehicle–track interaction in a railway crossing using Green’s functions. J. Sound Vib. 410, 318–329 (2017)

    Article  Google Scholar 

  20. Pålsson, B.: Optimisation of railway switches and crossings. PhD thesis, Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, Sweden (2014)

    Google Scholar 

  21. Li, X., Nielsen, J.C.O., Torstensson, P.T.: Simulation of wheel–rail impact load and sleeper–ballast contact pressure in railway crossings using a Green’s function approach. J. Sound Vib. 463, 114949 (2019)

    Google Scholar 

  22. Newton, S.G., Clark, R.A.: An investigation into the dynamic effects on track of wheelflats on railway vehicles. J. Mech. Eng. Sci. 21(4), 287–297 (1979)

    Article  Google Scholar 

  23. Fermér, M., Nielsen, J.C.O.: Wheel/rail contact forces for flexible versus solid wheels due to tread irregularities. Veh. Syst. Dyn. 23(S1), 142–157 (1994)

    Article  Google Scholar 

  24. Fermér, M., Nielsen, J.C.O.: Vertical interaction between train and track with soft and stiff railpads – full-scale experiments and theory. Proc. Inst. Mech. Eng. J. Rail Rapid Transit 209, 39–47 (1995)

    Article  Google Scholar 

  25. Dukkipati, R.V., Dong, R.: Impact loads due to wheel flats and shells. Veh. Syst. Dyn. 31, 1–22 (1999)

    Article  Google Scholar 

  26. Jenkins, H.H., Stephenson, J.E., Clayton, G.A., Morland, G.W., Lyon, D.: The effect of track and vehicle parameters on wheel/rail vertical dynamic forces. Rail. Eng. J. 3(1), 2–16 (1974)

    Google Scholar 

  27. Gullers, P., Andersson, L., Lundén, R.: High-frequency vertical wheel–rail contact forces – field measurements and influence of track irregularities. Wear 265, 1472–1478 (2008)

    Article  Google Scholar 

  28. Kassa, E., Nielsen, J.C.O.: Dynamic interaction between train and railway turnout: full-scale field test and validation of simulation models. Veh. Syst. Dyn. 46(Suppl), 521–534 (2008)

    Article  Google Scholar 

  29. Pålsson, B.A., Nielsen, J.C.O.: Dynamic vehicle–track interaction in switches and crossings and the influence of rail pad stiffness – field measurements and validation of a simulation model. Veh. Syst. Dyn. 53(6), 734–755 (2015)

    Article  Google Scholar 

  30. Torstensson, P.T., Squicciarini, G., Krüger, M., Nielsen, J.C.O., Thompson, D.J.: Hybrid model for prediction of impact noise generated at railway crossings. In: Anderson, D., et al. (eds.) Proceedings of the 12th International Workshop on Railway Noise, September 2016, Terrigal, Australia. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 139, pp. 759–769. Springer, Heidelberg (2018)

    Google Scholar 

  31. Torstensson, P.T., Squicciarini, G., Krüger, M., Pålsson, B.A., Nielsen, J.C.O., Thompson, D.J.: Wheel–rail impact loads and noise generated at railway crossings – influence of vehicle speed and crossing dip angle. J. Sound Vib. 456, 119–136 (2019). https://doi.org/10.1016/j.jsv.2019.04.034

    Article  Google Scholar 

  32. Cordier, J.F., Letourneaux, F., Fortmann, J.C., Müller, R.: Acoustic impact of defects on railway wheel running surfaces. In: World Congress on Railway Research, Montreal, Canada, June (2006)

    Google Scholar 

  33. Kaku, J., Yamashita, M.: Impact noise from railroads. J. Sound Vib. 120(2), 333–337 (1988)

    Article  Google Scholar 

  34. Wu, T.X., Thompson, D.J.: A hybrid model for the noise generation due to railway wheel flats. J. Sound Vib. 251(1), 115–139 (2002)

    Article  Google Scholar 

  35. EN 15610. Railway applications – Noise emission – Rail and wheel roughness measurement related to rolling noise generation (2019)

    Google Scholar 

  36. Thompson, D.J.: On the relationship between wheel and rail surface roughness and rolling noise. J. Sound Vib. 193(1), 149–160 (1996)

    Article  Google Scholar 

  37. Pieringer, A., Kropp, W., Nielsen, J.C.O.: The influence of contact modelling on simulated wheel/rail interaction due to wheel flats. Wear 314, 273–281 (2014)

    Article  Google Scholar 

  38. Baeza, L., Roda, A., Carballeira, J., Giner, E.: Railway train–track dynamics for wheelflats with improved contact models. Non-linear Dyn. 45(3), 385–397 (2006)

    Article  MATH  Google Scholar 

  39. Remington, P.J., Webb, J.: Estimation of wheel/rail interaction forces in the contact area due to roughness. J. Sound Vib. 193, 83–102 (1996)

    Article  Google Scholar 

  40. Steenbergen, M.J.M.M.: The role of the contact geometry in wheel–rail impact due to wheel flats. Veh. Syst. Dyn. 45(12), 1097–1116 (2007)

    Article  Google Scholar 

  41. Wu, T.X., Thompson, D.J.: On the impact noise generation due to a wheel passing over rail joints. J. Sound Vib. 267(3), 485–496 (2003)

    Article  Google Scholar 

  42. Pålsson, B.A.: A linear wheel–crossing interaction model. Proc. Inst. Mech. Eng. J. Rail Rapid Transit 232(10), 2431–2443 (2018)

    Article  Google Scholar 

  43. Hertz, H.: Über die Berührung fester elastischer Körper. J. für reine und angewandte Mathematik 92, 156–171 (1882)

    MATH  Google Scholar 

  44. Nielsen, J.C.O., Igeland, A.: Vertical dynamic interaction between train and track – influence of wheel and track imperfections. J. Sound Vib. 187, 825–839 (1995)

    Article  Google Scholar 

  45. Dong, R.G., Sankar, S.R., Dukkipati, V.: A finite element model of railway track and its application to the wheel flat problem. Proc. Inst. Mech. Eng. J. Rail Rapid Transit 208, 61–72 (1994)

    Article  Google Scholar 

  46. Lundberg, G., Sjövall, H.: Stress and deformation in elastic contacts. Publikation no 4, The Institution of Theory of Elasticity and Strength of Materials, Chalmers University of Technology, Gothenburg, Sweden (1958)

    Google Scholar 

  47. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  48. Pieringer, A.: Time-domain modelling of high-frequency wheel/rail interaction. PhD thesis, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden (2011)

    Google Scholar 

  49. Wu, T.X., Thompson, D.J.: Theoretical investigation of wheel/rail non-linear interaction due to roughness excitation. Veh. Syst. Dyn. 34, 261–282 (2000)

    Article  Google Scholar 

  50. Zhao, X., Li, Z., Liu, J.: Wheel–rail impact and the dynamic forces at discrete supports of rails in the presence of singular rail surface defects. Proc. Inst. Mech. Eng. J. Rail Rapid Transit 226, 124–139 (2012)

    Article  Google Scholar 

  51. Yang, Z., Boogaard, A., Chen, R., Dollevoet, R., Li, Z.: Numerical and experimental study of wheel–rail impact vibration and noise generated at an insulated rail joint. Int. J. Impact Eng 113, 29–39 (2018)

    Article  Google Scholar 

  52. Cerruti, V.: Mem. fis. mat. Accademia dei Lincei, Rome (1882)

    Google Scholar 

  53. Boussinesq, J.: Application des Potentiels à l’Étude de l’Équilibre et du Mouvement des Solides Élastiques. Gauthier-Villars, Paris (1885)

    MATH  Google Scholar 

  54. Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Kluwer Academic Publishers, Dordrecht (1990)

    Book  MATH  Google Scholar 

  55. Pascal, J.P., Sauvage, G.: The available methods to calculate the wheel/rail forces in non-Hertzian contact patches and rail damaging. Veh. Syst. Dyn. 22, 263–275 (1993)

    Article  Google Scholar 

  56. Ayasse, J.-B., Chollet, H.: Determination of the wheel rail contact patch in semi-Hertzian conditions. Veh. Syst. Dyn. 43(3), 161–172 (2005)

    Article  Google Scholar 

  57. Piotrowski, J., Kik, W.: A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamics. Veh. Syst. Dyn. 46(1–2), 27–48 (2008)

    Article  Google Scholar 

  58. Sichani, M.S., Enblom, R., Berg, M.: A novel method to model wheel–rail normal contact in vehicle dynamics simulation. Veh. Syst. Dyn. 52(12), 1752–1764 (2014)

    Article  Google Scholar 

  59. Knothe, K.L., Grassie, S.L.: Modelling of railway track and vehicle/track interaction at high frequencies. Veh. Syst. Dyn. 22, 209–262 (1993)

    Article  Google Scholar 

  60. Popp, K., Kruse, H., Kaiser, I.: Vehicle–track dynamics in the mid-frequency range. Veh. Syst. Dyn. 31(5–6), 423–464 (1999)

    Article  Google Scholar 

  61. Nielsen, J.C.O., Lundén, R., Johansson, A., Vernersson, T.: Train–track interaction and mechanisms of irregular wear on wheel and rail surfaces. Veh. Syst. Dyn. 40(1–3), 3–54 (2003)

    Article  Google Scholar 

  62. Thompson, D.J., van Vliet, W.J., Verheij, J.W.: Development of the indirect method for measuring the high frequency dynamic stiffness of resilient elements. J. Sound Vib. 213(1), 169–188 (1998)

    Article  Google Scholar 

  63. Thompson, D.J., Verheij, J.W.: The dynamic behaviour of rail fasteners at high frequencies. Appl. Acoust. 52(1), 1–17 (1997)

    Article  Google Scholar 

  64. Iwnicki, S. (ed.): Handbook of Railway Vehicle Dynamics. CRC Press (2006)

    Google Scholar 

  65. Nielsen, J.C.O.: High-frequency vertical wheel–rail contact forces – validation of a prediction model by field testing. Wear 265, 1465–1471 (2008)

    Article  Google Scholar 

  66. Grassie, S.L., Gregory, R.W., Harrison, D., Johnson, K.L.: The dynamic response of railway track to high-frequency vertical excitation. J. Mech. Eng. Sci. 24, 77–90 (1982)

    Article  Google Scholar 

  67. Tunna, J.M.: Wheel/rail forces due to wheel irregularities. In: 9th International Wheelset Congress, Montreal, Canada, September (1988)

    Google Scholar 

  68. Andersson, C., Dahlberg, T.: Wheel/rail impacts at a railway turnout crossing. Proc. Inst. Mech. Eng. J. Rail Rapid Transit 212, 123–134 (1998)

    Article  Google Scholar 

  69. Heckl, M.: Proposal for a railway simulation program. In: A Workshop on Rolling Noise Generation. Institut für Technische Akustik, Technische Universität Berlin, pp. 128–148 (1989)

    Google Scholar 

  70. Nordborg, A.: Wheel/rail noise generation due to nonlinear effects and parametric excitation. J. Acoust. Soc. Am 111(4), 1772–1781 (2002)

    Article  Google Scholar 

  71. Wu, T.X., Thompson, D.J.: The effects of track non-linearity on wheel/rail impact. Proc. Inst. Mech. Eng. J. Rail Rapid Transit 218, 1–5 (2004)

    Article  Google Scholar 

  72. Nielsen, J.C.O., Oscarsson, J.: Simulation of dynamic train–track interaction with state-dependent track properties. J. Sound Vib. 275, 515–532 (2004)

    Article  Google Scholar 

  73. Thompson, D.J., Hemsworth, B., Vincent, N.: Experimental validation of the TWINS prediction program for rolling noise. Part I: description of the model and method. J. Sound Vib. 193, 123–135 (1996)

    Article  Google Scholar 

  74. Yang, J., Thompson, D.J.: Time-domain prediction of impact noise from wheel flats based on measured profiles. J. Sound Vib. 333, 3981–3995 (2014)

    Article  Google Scholar 

  75. Sueki, T., Kitagawa, T., Kawaguchi, T.: Evaluation of acoustic and vibratory characteristics of impact noise due to rail joints. QR RTRI 58, 119–125 (2017)

    Article  Google Scholar 

  76. Andersson, R., Torstensson, P.T., Kabo, E., Larsson, F.: An efficient approach to the analysis of rail surface irregularities accounting for dynamic train–track interaction and inelastic deformations. Veh. Syst. Dyn. 53(11), 1667–1685 (2015)

    Article  Google Scholar 

  77. Sheng, X., Jones, C.J.C., Thompson, D.J.: A comparison of a theoretical model for quasi-statically and dynamically induced environmental vibration from trains with measurements. J. Sound Vib. 267(3), 621–635 (2005)

    Article  Google Scholar 

  78. Auersch, L.: Ground vibration due to railway traffic – the calculation of the effects of moving static loads and their experimental verification. J. Sound Vib. 293, 599–610 (2006)

    Article  Google Scholar 

  79. Lombaert, G., Degrande, G., Kogut, J., François, S.: The experimental validation of a numerical model for the prediction of railway induced vibrations. J. Sound Vib. 297(3–5), 512–535 (2006)

    Article  Google Scholar 

  80. Nielsen, J.C.O., et al.: Reducing train-induced ground-borne vibration by vehicle design and maintenance. Int. J. Rail Transp. 3(1), 17–39 (2015)

    Article  Google Scholar 

  81. Müller, R., Nielsen, J.C.O., Nélain, B., Zemp, A.: Ground-borne vibration mitigation measures for turnouts: State-of-the-art and field tests. In: Nielsen, J.C.O., et al. (eds.) Proceedings of the 11th International Workshop on Railway Noise, September 2013, Uddevalla, Sweden. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 126, pp. 547–554, Springer, Heidelberg (2015)

    Google Scholar 

  82. Galvin, P., Romero, A., Dominguez, J.: Fully three-dimensional analysis of high-speed train-track-soil-structure dynamic interaction. J. Sound Vib. 329(24), 5147–5163 (2010)

    Article  Google Scholar 

  83. Nielsen, J.C.O., Lombaert, G., François, S.: A hybrid model for prediction of ground-borne vibration due to discrete wheel/rail irregularities. J. Sound Vib. 345, 103–120 (2015)

    Article  Google Scholar 

  84. Nielsen, J.C.O.: Classification of track conditions with respect to vibration emission – Part 1: Classification of track irregularities and numerical simulations. RIVAS(SCP0-GA-2010–265754), Deliverable 2.1, p. 74 (2012)

    Google Scholar 

  85. Kouroussis, G., Connolly, D.P., Alexandrou, G., Vogiatzis, K.: Railway ground vibrations induced by wheel and rail singular defects. Veh. Syst. Dyn. 53(10), 1500–1519 (2015)

    Article  Google Scholar 

  86. Nicklisch, D., Kassa, E., Nielsen, J.C.O., Ekh, M., Iwnicki, S.: Geometry and stiffness optimization for switches and crossings, and simulation of material degradation. Proc. Inst. Mech. Eng. J. Rail Rapid Transit 224, 279–292 (2010)

    Article  Google Scholar 

  87. Wan, C., Markine, V.L., Shevtsov, I.Y.: Improvement of vehicle–turnout interaction by optimising the shape of crossing nose. Veh. Syst. Dyn. 52, 1517–1540 (2014)

    Article  Google Scholar 

  88. Wan, C., Markine, V., Dollevoet, R.: Robust optimisation of railway crossing geometry. Veh. Syst. Dyn. 54, 617–634 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been performed within the Centre of Excellence CHARMEC, see www.charmec.chalmers.se. Parts of the study have been funded within the European Union’s Horizon 2020 research and innovation programme in the project In2Track2 under grant agreement No 826255. The contributions by co-workers Björn Pålsson, Giacomo Squicciarini and Tianxing Wu in studies leading up to this review paper are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens C. O. Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nielsen, J.C.O., Pieringer, A., Thompson, D.J., Torstensson, P.T. (2021). Wheel–Rail Impact Loads, Noise and Vibration: A Review of Excitation Mechanisms, Prediction Methods and Mitigation Measures. In: Degrande, G., et al. Noise and Vibration Mitigation for Rail Transportation Systems. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 150. Springer, Cham. https://doi.org/10.1007/978-3-030-70289-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70289-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70288-5

  • Online ISBN: 978-3-030-70289-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics